Pythagorean Theorem Unit 7 Part 1. The Pythagorean Theorem The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse.

Slides:



Advertisements
Similar presentations
TODAY IN GEOMETRY… Warm Up: Simplifying Radicals
Advertisements

The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
1 9.1 and 9.2 The Pythagorean Theorem. 2 A B C Given any right triangle, A 2 + B 2 = C 2.
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
CHAPTER 8 RIGHT TRIANGLES
8.1 Pythagorean Theorem and Its Converse
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
8.1 The Pythagorean Theorem and Its Converse. Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs is equal to the.
Pythagorean Theorem Use the Pythagorean Theorem to find the missing length of the right triangle. 1.
Objective: To use the Pythagorean Theorem and its converse.
Pythagorean Theorem And Its Converse
Section 11.6 Pythagorean Theorem. Pythagorean Theorem: In any right triangle, the square of the length of the hypotenuse equals the sum of the squares.
Holt Course 2 NY-10 Using the Pythagorean Theorem NY-10 Using the Pythagorean Theorem Holt Course 2 Lesson Presentation Lesson Presentation.
+ Warm Up B. + Homework page 4 in packet + #10 1. Given 2. Theorem Given 4. Corresponding angles are congruent 5. Reflexive 6. AA Similarity 7.
Section 3-5 p. 137 Goal – to solve problems using the Pythagorean Theorem.
7.1 – Apply the Pythagorean Theorem. Pythagorean Theorem: leg hypotenuse a b c c 2 = a 2 + b 2 (hypotenuse) 2 = (leg) 2 + (leg) 2 If a triangle is a right.
Right Triangles and Trigonometry Chapter 8. Pythagorean Theorem a 2 + b 2 = c 2 right triangle a 2 + b 2 < c 2 obtuse triangle a 2 + b 2 > c 2 acute triangle.
3.6 Pythagorean Theorem Warm-up (IN) 1.Find the area of a square whose sides are 10 units long. 2. The square of what number is 2704? 3. Evaluate each.
Section 8-1: The Pythagorean Theorem and its Converse.
Goal 1: To use the Pythagorean Theorem Goal 2: To use the Converse of the Pythagorean Theorem.
Geometry Section 9.3 Pythagorean Theorem Converse.
Chapter 1: Square Roots and the Pythagorean Theorem Unit Review.
The Pythagorean Theorem
Topic 10 – Lesson 9-1 and 9-2. Objectives Define and identify hypotenuse and leg in a right triangle Determine the length of one leg of a right triangle.
Geometry Section 7.2 Use the Converse of the Pythagorean Theorem.
7.1 – Apply the Pythagorean Theorem. In your group, do the following: 1. Find the area of one of the four right triangles baba abab b a c.
Lesson 7-2: Pythagorean Theorem. Pythagorean Theorem In a ________ ________, the sum of the squares of the ______ of a right triangle will equal the square.
Geometry Chapter 8 Review. Geometric Mean Find the geometric mean between the two numbers. 7.5 and and 49.
Pythagorean Theorem and Its Converse Chapter 8 Section 1.
Converse of Pythagorean Theorem
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
The Pythagorean Theorem Use the Pythagorean Theorem to find the missing measure in a right triangle including those from contextual situations.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
Section 8-3 The Converse of the Pythagorean Theorem.
Converse to the Pythagorean Theorem
10-1 The Pythagorean Theorem. LEGS Hypotenuse Problem 1: Finding the Length of a Hypotenuse The tiles shown below are squares with 6-in. sides. What.
A b c. P ROVING THE P YTHAGOREAN T HEOREM THEOREM THEOREM 8-1 Pythagorean Theorem c 2 = a 2 + b 2 b a c In a right triangle, the square of the length.
Converse of the Pythagorean Theorem
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
8-1: The Pythagorean Theorem and its Converse
Pythagorean Theorem and it’s Converse
Pythagorean theorem.
Rules of Pythagoras All Triangles:
Rules of Pythagoras All Triangles:
The Converse of the Pythagorean Theorem
LT 5.7: Apply Pythagorean Theorem and its Converse
4.5 The Converse of the Pythagorean Theorem
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
Bellringer Simplify each expression 5 ∙ ∙ 8.
Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Notes Over Pythagorean Theorem
6-3 The Pythagorean Theorem Pythagorean Theorem.
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
5-7 The Pythagorean Theorem
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
The Pythagorean Theorem
7-1 and 7-2: Apply the Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
Objective: To use the Pythagorean Theorem and its converse.
If a triangle is a RIGHT TRIANGLE, then a2 + b2 = c2.
Similar Triangles Review
The Pythagorean Theorem
10-1 The Pythagorean Theorem
Converse to the Pythagorean Theorem
7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE
Presentation transcript:

Pythagorean Theorem Unit 7 Part 1

The Pythagorean Theorem The sum of the squares of the legs of a right triangle is equal to the square of the hypotenuse. a 2 + b 2 = c 2

Purpose The Pythagorean Theorem is used to find the missing length of one side of a right triangle when the other two sides are known.

Use to Find the Hypotenuse

Use to Find a Leg - -

Example

Baseball and the Pythagorean Theorem

Other Shapes Show the Pythagorean Relationship

Converse of the Pythagorean Theorem

The Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse. a b c a 2 + b 2 = c 2

Converse of the Pythagorean Theorem If a, b, and c are the lengths of the sides of a triangle, and a 2 + b 2 = c 2 then then triangle is a right triangle. a b c If a 2 + b 2 > c 2 then acute. If a 2 + b 2 < c 2 then obtuse.

Entering into the calculator If you are looking for a missing leg then, Leg =  ( hyp² - leg²) If you are looking for the hypotenuse then, Hyp. =  (leg² + leg²)