H = ½ ω (p 2 + q 2 ) The Harmonic Oscillator QM
Recap of the Rotational and Vibrational Energy Level Expressions for a Rigid Diatomic Molecule Vibrating with Simple Harmonic Motion Recap Rot & Vib Energy Level
y = ax 2 The Quadratic Curve
Harmonic Oscillator
AClassical Description E = T + V E = ½mv 2 + ½kx 2 B QM description - the Hamiltonian H v = E(v) v CSolve the Hamiltonian - Energy Levels G(v) = ω(v+ ½) (cm -1 ) DSelection Rules - Allowed Transitions v = ±1 ETransition Frequencies > G = ω FIntensities - THE SPECTRUM J Analysis - Pattern recognition; assign quantum numbers HExperimental Details - spectrometers, lasers IMore Advanced Details: anharmonicity JInformation: potential, force constants, group identification Harry Kroto 2004
Hooke F = -kx
Anharmonic Oscillator
Born and Oppenheimer
Born-Oppenheimer Theory E= i E i
Born Oppenheimer Separation
Separation Vibration Rotation
Born Oppenheimer Separation Vib - Rot
Harry Kroto 2004 Vibration Rotation Spectroscopy
CO Infra Red Spectrum (Colin)
ABC Rotation of a Diatomic Molecule
CO Rotational Spectrum PROBLEM
Hamilton