Geometry 2-3 Parallel and perpendicular lines. Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.

Slides:



Advertisements
Similar presentations
7-5 Coordinate Geometry Warm Up Problem of the Day Lesson Presentation
Advertisements

3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Preview Warm Up California Standards Lesson Presentation.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Warm Up Write an equation in slope-intercept form of the line having the given slope and passing through the given point. m = -3/2, (-8,9) M = ¼, (-8,6)
4-9 Slopes of Parallel and Perpendicular Lines Warm Up
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
4-9 Slopes of Parallel and Perpendicular Lines Warm Up
Algebra1 Slopes of Parallel and Perpendicular Lines
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Warm Up Complete each statement.
Conditions for Parallelograms
Pre-Algebra 5.5 Coordinate Geometry. Complete each sentence. 1. Two lines in a plane that never meet are called lines. 2. lines intersect at right angles.
Slopes of Parallel and Perpendicular Lines
Holt CA Course Coordinate Geometry Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Geometry: Parallel and Perpendicular Lines
Section 6.6 What we are Learning:
5-8 Slopes of Parallel and Perpendicular Lines Warm Up
5-5 Coordinate Geometry Warm Up Problem of the Day Lesson Presentation
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 6-3 Conditions for Parallelograms 6-3 Conditions for Parallelograms Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
Warm Up Given: (3, -5) and (-2, 1) on a line. Find each of the following: 1.Slope of the line 2.Point-Slope equation of the line 3.Slope-Intercept equation.
Holt McDougal Geometry 3-5 Slopes of Lines 3-5 Slopes of Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Algebra 1 Notes Lesson 5-6: Parallel and Perpendicular Lines.
Lines in the Coordinate Plane
Warm Up Find the reciprocal
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 3-5 Slopes of Lines 3-5 Slopes of Lines Holt Geometry
Linear Functions Lesson 2: Slope of Parallel and Perpendicular Lines.
Holt Geometry 3-5 Slopes of Lines 3-5 Slopes of Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt McDougal Algebra Slopes of Parallel and Perpendicular Lines Identify and graph parallel and perpendicular lines. Write equations to describe.
Warm Up Find the value of m undefined.
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 3-4 Slopes of Lines 3-4 Slopes of Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
10. 2x – 5 > x; x > 524. x = 6; y = x – 3 > 6x + 5; x > 8/331. C 12. X = 45; y = F 13. X = 6; y = B 14. X = 25; y = C 15. X =
Holt McDougal Geometry 3-5 Slopes of Lines Toolbox Pg. 185 (10-16 even; 19-22; 27 why 4 ; 38-40)
Pre-Algebra 5-5 Coordinate Geometry 5-5 Coordinate Geometry Pre-Algebra Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson.
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
QUIZ REVIEW.
Warm Up Find the value of m
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Objectives Find the slope of a line.
Warm Up Find the value of m undefined.
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Class Greeting.
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
concepts, and examples Lesson Objectives: I will be able to …
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Day 107 – A rectangle and a square on the x-y plane
Objectives Find the slope of a line.
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
3-5: Vocabulary rise, run, slope point-slope form of a line
3-5: Vocabulary rise, run, slope point-slope form of a line
3-5 Slopes of Lines Warm Up Lesson Presentation Lesson Quiz
Conditions for Parallelograms
Day 108 – Rhombus and a parallelogram on x-y plane
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Warm Up Find the value of m undefined.
Perpendicular and Angle Bisectors
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
3-6 Warm Up Find the value of m
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Warm Up 5 –1 1. Find AB for A (–3, 5) and B (1, 2).
Presentation transcript:

Geometry 2-3 Parallel and perpendicular lines. Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview

Geometry 2-3 Parallel and perpendicular lines. Warm Up Find the reciprocal Find the slope of the line that passes through each pair of points. 4. (2, 2) and (–1, 3) 5. (3, 4) and (4, 6) 6. (5, 1) and (0, 0) 3 2

Geometry 2-3 Parallel and perpendicular lines. Vocabulary parallel lines perpendicular lines

Geometry 2-3 Parallel and perpendicular lines. The slope of a line in a coordinate plane is a Ratio that describes the steepness (Rise over Run) of the line. Any two points on a line can be used to determine the slope.

Geometry 2-3 Parallel and perpendicular lines.

Geometry 2-3 Parallel and perpendicular lines. One interpretation of slope is a rate of change. If y represents miles traveled and x represents time in hours, the slope gives the rate of change in miles per hour.

Geometry 2-3 Parallel and perpendicular lines. Example 1: Finding the Slope of a Line Use the slope formula to determine the slope the line. CD Substitute (4, 2) for (x 1, y 1 ) and (–2, 1) for (x 2, y 2 ) in the slope formula and then simplify.

Geometry 2-3 Parallel and perpendicular lines. TEACH! Example 1 Use the slope formula to determine the slope of JK through J(3, 1) and K(2, –1). Substitute (3, 1) for (x 1, y 1 ) and (2, –1) for (x 2, y 2 ) in the slope formula and then simplify.

Geometry 2-3 Parallel and perpendicular lines. TEACH: Example 1a Graph each pair of lines. Use slopes to determine whether the lines are parallel, perpendicular, or neither. WX and YZ for W(3, 1), X(3, –2), Y(–2, 3), and Z(4, 3) Vertical and horizontal lines are perpendicular.

Geometry 2-3 Parallel and perpendicular lines. Check It Out! Example 1b Graph each pair of lines. Use slopes to determine whether the lines are parallel, perpendicular, or neither. KL and MN for K(–4, 4), L(–2, –3), M(3, 1), and N(–5, –1) The slopes are not the same, so the lines are not parallel. The product of the slopes is not –1, so the lines are not perpendicular.

Geometry 2-3 Parallel and perpendicular lines. TEACH: Example 1c Graph each pair of lines. Use slopes to determine whether the lines are parallel, perpendicular, or neither. BC and DE for B(1, 1), C(3, 5), D(–2, –6), and E(3, 4) The lines have the same slope, so they are parallel.

Geometry 2-3 Parallel and perpendicular lines.

Geometry 2-3 Parallel and perpendicular lines.

Geometry 2-3 Parallel and perpendicular lines. In a parallelogram, opposite sides are parallel. Remember!

Geometry 2-3 Parallel and perpendicular lines. Example 2: Show that JKLM is a parallelogram. Use the ordered pairs and the slope formula to find the slopes of MJ and KL. MJ is parallel to KL because they have the same slope. JK is parallel to ML because they are both horizontal. Since opposite sides are parallel, JKLM is a parallelogram.

Geometry 2-3 Parallel and perpendicular lines. TEACH! Example 2 Show that the points A(0, 2), B(4, 2), C(1, –3), D(–3, –3) are the vertices of a parallelogram. AD is parallel to BC because they have the same slope. A(0, 2) B(4, 2) D(–3, –3) C(1, –3) AB is parallel to DC because they are both horizontal. Since opposite sides are parallel, ABCD is a parallelogram. Use the ordered pairs and slope formula to find the slopes of AD and BC.

Geometry 2-3 Parallel and perpendicular lines. Perpendicular lines are lines that intersect to form right angles (90 °).

Geometry 2-3 Parallel and perpendicular lines. Identify which lines are perpendicular: y = 3; x = –2; y = 3x;. The graph given by y = 3 is a horizontal line, and the graph given by x = –2 is a vertical line. These lines are perpendicular. y = 3 x = –2 y =3x Example 3: Identifying Perpendicular Lines

Geometry 2-3 Parallel and perpendicular lines. y = 3 x = –2 y =3x Continue These lines are perpendicular because the product of their slopes is –1. The slope of the line given by y = 3x is 3. The slope of the line described by is.

Geometry 2-3 Parallel and perpendicular lines. TEACH! Example 3 Identify which lines are perpendicular: y = –4; y – 6 = 5(x + 4); x = 3; y = The graph described by x = 3 is a vertical line, and the graph described by y = –4 is a horizontal line. These lines are perpendicular. The slope of the line described by y – 6 = 5(x + 4) is 5. The slope of the line described by y = is y = –4 x = 3 y – 6 = 5(x + 4)

Geometry 2-3 Parallel and perpendicular lines. TEACH! Example 3 Continued Identify which lines are perpendicular: y = –4; y – 6 = 5(x + 4); x = 3; y = These lines are perpendicular because the product of their slopes is –1. y = –4 x = 3 y – 6 = 5(x + 4)

Geometry 2-3 Parallel and perpendicular lines. Slopes of Parallel and Perpendicular Lines The slopes of two nonvertical lines are equal. Two lines with the same slope are parallel Vertical lines are parallel The product of the slopes of two perpendicular lines, neither of which is vertical, is -1. If the product of the slopes of two lines is -1, then the two lines are perpendicular A horizontal line and a vertical line are perpendicular.

Geometry 2-3 Parallel and perpendicular lines. Helpful Hint If you know the slope of a line, the slope of a perpendicular line will be the "opposite reciprocal.”

Geometry 2-3 Parallel and perpendicular lines. Facts: Theorems Two lines parallel to a third line are parallel to each other. In a plane, two lines perpendicular to a third line are parallel to each other.

Geometry 2-3 Parallel and perpendicular lines. Example 4: Show that ABC is a right triangle. slope of Therefore, ABC is a right triangle because it contains a right angle. If ABC is a right triangle, AB will be perpendicular to AC. AB is perpendicular to AC because

Geometry 2-3 Parallel and perpendicular lines. TEACH! Example 4 Show that P(1, 4), Q(2, 6), and R(7, 1) are the vertices of a right triangle. PQ is perpendicular to PR because the product of their slopes is –1. slope of PQ Therefore, PQR is a right triangle because it contains a right angle. If PQR is a right triangle, PQ will be perpendicular to PR. P(1, 4) Q(2, 6) R(7, 1) slope of PR

Geometry 2-3 Parallel and perpendicular lines. Lesson Quiz: Part I Write an equation in slope-intercept form for the line described. 1. contains the point (8, –12) and is parallel to 2. contains the point (4, –3) and is perpendicular to y = 4x + 5

Geometry 2-3 Parallel and perpendicular lines. Lesson Quiz: Part II 3. Show that WXYZ is a rectangle. The product of the slopes of adjacent sides is –1. Therefore, all angles are right angles, and WXYZ is a rectangle. slope of = XY slope of YZ = 4 slope of = WZ slope of XW = 4