Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.

Slides:



Advertisements
Similar presentations
1 Water vapour self-continuum: Recent update from Reading/RAL Semi-annual CAVIAR meeting UCL, London Igor Ptashnik, Keith Shine, Andrey Vigasin.
Advertisements

The HITRAN Molecular Database
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
MULTIPLEXED CHIRPED PULSE QUANTUM CASCADE LASER MEASUREMENTS OF AMMONIA AND OTHER SMALL MOLECULES Craig Picken, David Wilson, Nigel Langford and Geoffrey.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
EXPERIMENTAL AND THEORETICAL STUDY OF WATER-VAPOR CONTINUUM ABSORPTION IN THE THZ REGION FROM 0.3 TO 2.7 THZ V.B. PODOBEDOV, D.F. PLUSQUELLIC, K.M. SIEGRIST.
* The number of transitions listed in this column are for the equivalent number of isotopologues and spectral range consistent with HITEMP2010 Comparison.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
Information System to Access HITRAN via the Internet Yu. L. Babikov, S. N. Mikhailenko, S. A. Tashkun, V.E. Zuev Institute of Atmospheric Optics, Tomsk,
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
(8) Absorption – Visible and IR Physics of the Atmosphere II Atmo II 193a.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
1 Partial Pressure Pressure of individual gases in a mixture.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
CDSD-4000: high-temperature spectroscopic CO 2 databank S.A. Tashkun, V.I. Perevalov Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
The IUPAC Critical Evaluation of the Ro-vibrational Spectra of Water Vapor: Results for H 2 18 O, H 2 17 O, and HD 16 O Jonathan Tennyson University College.
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Yu. I. BARANOV, W. J. LAFFERTY, and G. T. Fraser Optical Technology Division Optical Technology Division National Institute of Standards and Technology,
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Tony Clough, Mark Shephard and Jennifer Delamere Atmospheric & Environmental Research, Inc. Colleagues University of Wisconsin International Radiation.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Yu. I. BARANOV, and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
1 Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics Division Cambridge MA 02138, USA 60 th OSU Symposium on.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
The Greenhouse Effect. Natural heating of earth’s surface caused by greenhouse gases –CO 2 (Carbon Dioxide) –CH 3 (Methane) –N 2 O (Nitrous Oxide) –H.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Advertisement.
An accurate and complete empirical line list for water vapor
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Line Strength Measurements in the n2 band of H218O
Presentation transcript:

Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Tomsk, RUSSIA An-Wen LIU and Shui-Ming HU Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, , CHINA The HD 18 O molecule was detected recently in the upper Earth’s atmosphere [1]. We present and discuss here a line list of HD 18 O aimed at atmospheric applications. Experimental transitions in the cm -1 region originating from different experimental sources [2-12] have been validated based on the theoretical computations by Partridge and Schwenke (PS) [13, 14] and the set of 3033 precise experimental energy levels has been obtained using the fundamental Rydberg-Ritz principle [15]. General information about presented line list and comparison with HITRAN data are presented in Tables 1 and 2. Our detailed and accurate line list of the HD 18 O rotation-vibration transitions has been constructed based on the experimental energy levels and PS intensities. Accuracy of line positions included into the line list is illustrated by Figs. 1 and 2, The ( OBS - CALC ) differences on Fig. 1 are given for a whole region considered. Differences for most accurate transitions with the declared experimental uncertainties not exceeding cm -1 are shown on Fig. 2. Quality of the PS intensities involved in the line list is confirmed by the comparisons with available experimental data which are shown on Figs. 3 and 4. HD 18 O line list for atmospheric applications has been constructed by scaling the PS intensities to the natural abundance ( 6.23x10 -7 according to [16]) and applying the intensity cutoff of cm/molecule at 296 K. A comparison of our line list and HITRAN data is given in Table 1. All variationally predicted HD 18 O lines important for evaluation of the solar radiation absorption by the Earth atmosphere are shown in Fig. 5 (upper panel); middle panel corresponds to total absorption due to HD 18 O transitions included into our line list; low panel represents residual absorption. The calculated absorption spectra of the atmospheric air with (upper panel) and without (middle panel) contribution from water vapor, and HD 18 O (lower panel) in cm -1 spectral range are given in Fig. 6. Contribution of the HD 18 O absorption lines is clearly seen in the region of rotational bands and near 1500 and 3900 cm -1. Fig. 5. Atmospheric absorption with (upper panel) and without (middle panel) water vapor. Lower panel – absorption of HD 18 O References 1. Z. Zelinger et al., Molecular Physics, 104 (2006) G. Steenbeckeliers,Private communication (July 1971). 3. J.W. Fleming, M.J. Gibson, J. Mol. Spectrosc. 62 (1976) J.W.C. Johns, JOSA, B2 (1985) R.A. Toth, J. Mol. Spectrosc. 162 (1993) R.A. Toth, J. Mol. Spectrosc. 198 (1999) R.A. Toth, J. Mol. Structure, 742 (2005) A.-W. Liu et al., J. Mol. Spectrosc. 237 (2006) F. Mazzotti et al., J. Mol. Spectrosc. 243 (2007) S.N. Mikhailenko et al., JQSRT, 110 (2009) A.-W. Liu et al., JQSRT, 110 (2009) O.V. Naumenko et al., JQSRT, 111 (2010) H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) D.W. Schwenke, H. Partridge, J. Chem. Phys. 113 (2000) S.N. Mikhailenko et al., Oral FA06 on 65 th OSU Symposium, Columbus, OH, USA, June 21-25, L.S. Rothman et al., JQSRT, 110 (2009) Fig. 6. PS calculated (upper panel), predicted from experimental energies (middle panel) and their difference for the line positions of HD 18 O Table 1. General comparison of our and HITRAN line lists Our line listHITRAN Spectral Region (cm -1 )8 – – 3825 Number of Transitions Cut-off (cm/molecule)1x x *), 2x Number of Bands184 J max, K a max 20, 1113, 9 *) Only for pure rotational band Band Number of Transitions Region / cm -1 (000) – (000) 9868 – 668 (010) – (010) – 329 (010) – (000) – 1834 (020) – (010) – 1496 (100) – (000) – 2992 (020) – (000) – 3160 (001) – (000) – 3984 (110) – (000) – 4344 (030) – (000) – 4311 (011) – (000) – 5348 (200) – (000) – 5463 (040) – (000) – 5333 (101) – (000) – 6575 (021) – (000) – 6538 (210) – (000) – 6786 (002) – (000) – 7434 (012) – (000) – 8702 (003) – (000) – Table 2. Overview of our line list Fig. 1. Deviations of observed ( OBS ) and calculated ( CALC ) line positions for the whole spectral region Fig. 2. Deviations of observed ( OBS ) and calculated ( CALC ) wavenumbers for precise line positions (with uncertainties not exceeding cm -1 ) Fig. 3. I OBS / I PS intensity ratio for the line intensities of the 2 band [5]. Fig. 4. I OBS / I PS intensity ratio for the line intensities in the cm -1 region. Calculation conditions for Fig. 5 Pressure – 1 atm Path – 1200 m Apparatus resolution – 0.01 cm -1 Apparatus function – SINC**2 Temperature – 296 K Gas mixture: Water – 1.863% Carbon dioxide – % Ozone – 3  % Nitrous oxide – 3.2  % Carbon monoxide – 1.5  % Methane – 1.68  % Oxygen – % Nitrogen – %