HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Mass Spectrum of Carbon Clusters Heath, Liu, O’Brien, Curl, Kroto and Smalley unpublished data C 28
Prediction C 28 tetravalent and should be stabilised by addition of four H atoms HK Nature 1987
Prediction: because strain released and four C 6 aromatic rings remain HK Nature 1987
C 28 should be a giant tetravalent “Superatom” H W K Nature, 329, 529 (1987)
Ti Properties of C 28 in detail starting with 28 with Paul Dunk and Alan Marshall
C U
NHMFL FSU Laser vaporization of a UO 2 -graphite target laser fired at different points in time along the pulse pressure profile 28 is clearly seen to form before larger n species 28
Exxon Data Cox et al JACS (1988)
C 32
Endohedral Fullerene Comparison Spectra
Delft Buckyball Wkshp Dynamic Z
WOW Moment
Nori Shinohara - Nagoya Alan Marshall Dr. FT-ICR-MS Chris Hendrickson Nathan Kaiser Paul Dunk
Rice Group showed that under intense laser irradiation C 60 lost C 2 fragments sequentially and at C 32 blew up completely into small carbon species and atoms C 60 → C 58 → C 56 → → → → C 32 → C 2 C 2 C 2 C n (n small)
C 28 should be special - a tetravalent “Superatom” atom H W Kroto, Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28
Mass spectrum of laser vapourised graphite (Rice 1985) C 28
Sussex NNC
~sp 3
Four Benzenoid aromatic rings remain
Exxon Data Cox et al JACS (1988) NB No C 22 possible!
Sussex NNC
The structure proposed for C 28 contains four triple fused pentagons units arranged in tetrahedral symmetry.
Predicted stable and semi-stable Fullerenes image at: C 28 C 32 C 50 C 60 C 70
Predicted stable and semi-stable Fullerenes image at: C 28 C 32 C 50 C 60 C 70
C 28 should be tetravalent
C 28 U
C 28 Ti
distribution (RED) vs. empty cage distribution (BLUE) for FIG (2). Clearly shows titanium has stabilized C 28, and other small fullerenes.
C 28 Sussex NNC
C 28 ”superatom” analogue of sp 3 carbon atom Suggests T d C 28 H 4 Nature (1987) C 28 H 4
at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu... Endohedral Fullerenes can satisfy “valencies” internally
Titanium Rod – Positive ions M(C 28 ) + M(Ti) = = 384 C 28 Ti Predicted
C 32 ca 50 milliDaltons separation Titanium Rod – Positive ions M(C 28 ) + M(Ti) = = 384 M(C 32 ) = 384
Titanium Rod – Positive ions C 28 Ti Predicted Minus C 32 mass peaks
FT-ICR-MS relative intensities of n vs n n Abundancerel units Paul Dunk with Harry Kroto and Alan Marshall n vs n
(T d ) C 28 more stable by 717 kJmol -1 than D 2 (T d ) 28 more stable by 270 kJmol -1 than D 2 David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )
image at:
C 28 ”superatom” analogue of sp 3 carbon atom Suggests T d C 28 H 4 Nature (1987) C 28 H 4
at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu... Endohedral Fullerenes can satisfy “valencies” internally
FT-ICR-MS relative intensities of n vs n n Abundancerel units Paul Dunk with Harry Kroto and Alan Marshall n vs n
(T d ) C 28 more stable by 717 kJmol -1 than D 2 (T d ) 28 more stable by 270 kJmol -1 than D 2 David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )
For the bare cages, the tetrahedral isomer is more stable by a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to a.u. (270 kJmol- 1), but the tetrahedral isomer remains the more stable. David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )
at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu...
image at: people.whitman.edu/~hoffman/people.whitman.edu/~hoffman/
Abundance of Endohedral Fullerenes n vs n
n Abundancerel units 28 38
Some of the more stable members of the fullerene family. (a) C28. (b) C32. (c) C50. (d) C60. (e) C70. image at:
Abundance of Endohedral Fullerenes n vs n n Abundancerel units 28 38
For the bare cages, the tetrahedral isomer is more stable by a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to a.u. (270 kJmol- 1), but the tetrahedral isomer remains the more stable. David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )