Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.

Slides:



Advertisements
Similar presentations
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Advertisements

AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Broadband Rotational Spectrum and Molecular Geometry of OC  AgI Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center.
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
CALIFORNIA INSTITUTE OF TECHNOLOGY 68th International Symposium on Molecular Spectroscopy - June 19, 2013 A LOW-COST CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Microwave Spectra and Structure of CF 3 I···PH 3 by chirped-pulse spectroscopy in context of the CF 3 I···B and ClI···B series Susanna L. Stephens, Nick.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Daniel P. Zaleski and Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. David P. Tew and Anthony.
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 S-AgCl Nicholas R. Walker, David Wheatley, Anthony C. Legon 64 th OSU International Symposium on.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
pgopher in the Classroom and the Laboratory chm. bris
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Characterisation and Control of Cold Chiral Compounds
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
University of Arizona, Dept. of Physics
International Symposium on Molecular Spectroscopy
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
Presentation transcript:

Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66 th OSU International Symposium on Molecular Spectroscopy 1 19 th June,   R cm N I Engineering and Physical Sciences Research Council

Introduction 1)Halogen bond describes attractive interaction between electron donor (e.g. NH 3 ) and a halogen atom. 2)Significance of I  N interaction in solid-state technology exploiting halogen bonds. Iodoperfluoroalkanes are standard “building blocks” because electron-withdrawing CF 2 units allow stronger interactions of the iodine atom. 3) CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 excellent targets for CP-FTMW spectroscopy. Extensive hyperfine structure, many bands between 8-18 GHz.

Power divider SPST switch Mixer Low noise amplifier Pin diode limiter Adjustable attenuator 5W Power amplifier AWG ( GHz) Oscilloscope (0-12 GHz) 10 MHz reference frequency PDRO (19.00 GHz) GHz GHz 12.2 GHz Low-pass band filter CP-FTMW Spectrometer 300 W TWT Amplifier

OCS Multi-chirp excitation

CF 3 I CF 3 I  NH 3 ?? CF 3 I  NH 3

[1] G. T. Fraser, F. J. Lovas, R. D. Suenram, D. D. Nelson, Jr. and W. Klemperer, J. Chem. Phys. 1986, 84, [2] G. Valerio, G. Raos, S. V. Meille, P. Metrangolo and G. Resnati, J. Phys. Chem. A, 2000, 104, C 3v Symmetric top ? Internal rotation? The Hamiltonian

Energy/MHz Exp. Sim. [80 kHz FWHM] Energy/MHz A species sim. E species sim. Total (A and E) sim. Simulation and fitting using PGOPHER (2010, version ), a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, CF 3 I  14 NH 3

Energy/MHz Exp. Sim. CF 3 I  15 NH 3

A species CF 3 I  15 NH 3 CF 3 I  14 NH 3 / MHz (19) a (21) D J / kHz (15)0.0988(17) D JK / kHz 1.230(37)1.531(16) / MHz  (77)  (90) / MHz  3.337(51) N  r.m.s / kHz E species / MHz b c D J / kHz (12)0.0931(12) D JK / kHz 1.285(31)1.489(33) D Jm / kHz 36.81(34)39.76(38) D JKm / kHz (36)11.365(39) / MHz  (66)  (75) / MHz  3.151(42) N  r.m.s /kHz a Numbers in parentheses are one standard deviation in units of the last significant figure. b Fixed to the value of B 0 determined for CF 3 I  15 NH 3. c Fixed to the value of B 0 determined for CF 3 I  14 NH 3.

A speciesCF 3 I  15 N(CH 3 ) 3 CF 3 I  14 N(CH 3 ) 3 CP-FTMW ( < 10 GHz) / MHz (19) a (11) b D J  10 2 / kHz 2.793(37)2.950(30) b / MHz  (20)  (17)  b / MHz  c  4.761(88) N  r.m.s / kHz E species / MHz d e D J  10 2 / kHz 2.96(10)2.891(58) D Jm / kHz 29.06(49)29.71(31) D JKm / kHz 1.691(45)1.698(38) / MHz  (50)  (47) / MHz  c N  r.m.s /kHz a Numbers in parentheses are one standard deviation in units of the last significant figure. b Fixed to the values determined by fitting all transitions in the broadband spectrum. c Fixed to =  MHz, determined by fitting to selected transitions below 10 GHz.

3.054 Å > r N  I > Å for CF 3 I  NH 3 where 30  >  >0  and 8  >  >0  Å > r N  I > Å for CF 3 I  N(CH 3 ) 3 where 30  >  >0  and 8  >  >0  Structure implies  = 20.5(12)  for CF 3 I  NH 3 and  = 16.2(20)  for CF 3 I  N(CH 3 )

V. Amico, S. V. Meille, E. Corradi, M. T. Messina and G. Resnati, J. Am. Chem. Soc. 1998, 120, E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo and G. Resnati, Tetrahedron Lett. 1999, 40, r N  I =2.84(3) Å. r N  I close to 2.80 Å Å > r N  I > Å for CF 3 I  N(CH 3 ) 3 where 30  >  >0  and 8  >  >0  Å > r N  I > Å for CF 3 I  NH 3 where 30  >  >0  and 8  >  >0  Correspondence with solid state

Acknowledgements University of Bristol Susanna Stephens Tony C. Legon Ruth Oval Colin M. Western University of Virginia Brooks H. Pate Stephen T. Shipman Financial Support Engineering and Physical Sciences Research Council University of Sheffield Michael Hippler

CF 3 I  14 N(CH 3 ) 3 CF 3 I Energy/MHz Exp. A and E species sim. CF 3 I  14 N(CH 3 ) 3