Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Discovering Leaders from Community Actions Presenter : Wu, Jia-Hao Authors : Amit Goyal, Francesco Bonchi,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Unsupervised pattern recognition models for mixed feature-type.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Student : Sheng-Hsuan Wang Department.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Graph self-organizing maps for cyclic and unbounded graphs.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel genetic algorithm for automatic clustering Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Adaptive nonlinear manifolds and their applications to pattern.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology HE-Tree: a framework for detecting changes in clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The k-means range algorithm for personalized data clustering.
Intelligent Database Systems Lab 1 Advisor : Dr. Hsu Graduate : Jian-Lin Kuo Author : Silvia Nittel Kelvin T.Leung Amy Braverman 國立雲林科技大學 National Yunlin.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Looking inside self-organizing map ensembles with resampling.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology CONTOUR: an efficient algorithm for discovering discriminating.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology On Data Labeling for Clustering Categorical Data Hung-Leng.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Topology Preservation in Self-Organizing Feature Maps: Exact.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A self-organizing neural network using ideas from the immune.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 New Unsupervised Clustering Algorithm for Large Datasets.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 AC-ViSOM: Hybridising the Modified Adaptive Coordinate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Plagiarism Detection Technique for Java Program Using.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Manoranjan.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The Evolving Tree — Analysis and Applications Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology SEP/COP: An efficient method to find the best partition.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Novel Density-Based Clustering Framework by Using Level.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Efficient Optimal Linear Boosting of a Pair of Classifiers.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Chung-hung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A modified version of the K-means algorithm with a distance.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Authors :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Model-based evaluation of clustering validation measures.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fraud detection in online consumer reviews Presenter: Tsai Tzung Ruei Authors: Nan Hu, Ling Liu, Vallabh.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Rival-Model Penalized Self-Organizing Map Yiu-ming Cheung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Loss of the Mahalanobis Distance in High Dimensions-
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Multiclass boosting with repartitioning Graduate : Chen,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive FIR Neural Model for Centroid Learning in Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology ACM SIGMOD1 Subsequence Matching on Structured Time Series.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Hierarchical model-based clustering of large datasets.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author : Yongqiang Cao Jianhong Wu 國立雲林科技大學 National Yunlin University of Science.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Key Blog Distillation: Ranking Aggregates Presenter : Yu-hui Huang Authors :Craig Macdonald, Iadh Ounis.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Lynette.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Andrew.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive Clustering for Multiple Evolving Streams Graduate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Nonlinear Mapping for Data Structure Analysis John W.
Presentation transcript:

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering Edwin Lughofer PR, Vol , pp. 995–1011 Presenter : Wei-Shen Tai 2011/1/19

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 2 Outline Introduction Vector quantization Extensions of vector quantization Evaluation Conclusion and outlook Comments

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 3 Motivation Incremental clustering processes  Quite often online measurements are recorded resulting in data streams for various applications.  In an online manner, guarantee that queries are up-to-date and that results can be answered with a small time delay.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 4 Objective An incremental and evolving vector quantization  Processes data streams in a on-line clustering scheme.  Omits pre-definition of the number of clusters and improve the quality of cluster partitions with several strategies.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 5 Vector quantization 1.Choose initial values for the C cluster centers. 2.Fetch out the next data sample of the data set. 3.Calculate the distance of the selected data point to all cluster centers. 4.Elicit the cluster center which is closest to the data point. 5.Update the p components of the winning cluster by moving it towards the selected point. 6.If the data set contains data points which were not processed through steps 2–5, goto step 2. 7.If any cluster center was moved significantly in the last iteration, say more than, reset the pointer to the data buffer at the beginning and goto step 2, otherwise stop.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 6 Vector quantization in incremental mode Stability / plasticity dilemma in ART-2  Using vigilance parameter ρ to control the tradeoff between adaptation of already learned clusters (stability) and generation of new clusters (plasticity). Differences between VQ and VQ-INC  The starting number of clusters is zeros.  If the distance between the incoming input x and the closest cluster center c win is larger than ρ and x is not faulty, a new cluster will be created. Otherwise, c win is updated to move toward to x.  Update the ranges of all p variables if x is not faulty. Besides, η is changed with the amount of data points belonging to each cluster in a monotonic decreasing way.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 7 An alternative distance strategy  Both ‘over-clustering’ and incorrect partition of the input space occur in VQ-INC. Instead of classic Euclidean distance, the ranges of influence for all clusters or the surface along the direction towards the cluster center are applied in VQ-INC-EXT.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 8 Satellite deletion Cluster satellites  Undesirable tiny clusters, which lie very close to significantly bigger ones. Identify outliers and satellites  If k i /N <1%, cluster i is regarded as an outlier cluster.  If k i /N < low_mass and c i lies inside the range of influence of any other cluster, elicit the closest center c win.  Calculate the distance of c i to the surface of all other clusters.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 9 A split-and-merge strategy  Parameter ρ Cannot be known in advance and a bad setting may cause an incorrect cluster structure.  Not-optimal clustering It is prevented by merging clusters grown together or by splitting big clusters including more than one distinct data cloud. Calculate the quality of cluster partition in three phases including before spilt, after spilt (p results) and after merged. Then pick the best cluster partition to replace existing one.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 10 Evaluation

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 11 Conclusion and outlook A new extended vector quantization (VQ-INCEXT)  Can be applied for data streams in fast online applications or for huge data bases.  Provides an incremental learning scheme and incorporates new distance measurement, satellite deletion and online split-and-merge strategy. Outlooks  Split-and-merge strategy may suffer from computation speed.  Reacting to drifts or shifts in the data, drifts changes the distribution of the underlying data smoothly over time; shifts trigger abrupt and sudden changes of the data characteristics.

N.Y.U.S.T. I. M. Intelligent Database Systems Lab 12 Comments Advantage  This proposed method extends VQ to a incremental learning VQ and adds several strategies to improve the quality of cluster partition simultaneously.  Data streams can be effectively processed by this on-line learning VQ. Drawback  In algorithm 3, the vector of winning cluster is updated by Eq.(1) according to the Manhattan distance between the winning cluster and the input whenever the new distance strategy is applied. Application  Data stream on-line learning issue.