The truss lesson for people that are pretty smart.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education South Asia Pte Ltd
Advertisements

Supports TUTORIAL 3 to answer just click on the button or image related to the answer.
Equilibrium and Torque
Torque Physics 2 Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Torque Physics 6A Prepared by Vince Zaccone
Torque We know that Newton’s second law ( ) explains that the net force is the source of an object’s acceleration. What is the source of.
Beam Loading Example To determine the reaction forces acting at each support, we must determine the moments (represented as torques). Static Equilibrium:
Calculating Truss Forces
Physics Montwood High School R. Casao
Force vs. Torque Forces cause accelerations
Torque and Equilibrium Lecture 8 Pre-reading : KJF §8.1 and 8.2.
Physics Equilibrium: Torque Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund Department.
Torque and Rotational Equilibrium
Rotational Equilibrium
Equilibrium Equilibrium refers to a condition in which an object is at rest originally at rest (static equilibrium) or has a constant velocity if originaly.
Last Lecture Review 1 Two horizontal forces act on a block that is sliding on ice. Assume that a third horizontal force F also acts on the block. What.
CTC / MTC 222 Strength of Materials
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Beam Analysis Civil Engineering and Architecture
Engineering Mechanics: Statics
Beam Analysis Civil Engineering and Architecture
Shear Forces & Bending Moments Shear & Moment Diagrams
7.2 Shear and Moment Equations and Diagrams
Calculate the components of a force vector. Add two force vectors together. Draw a free body diagram. Calculate whether a truss is statically determinate.
Torque and Equilibrium
MOMENTS Created by The North Carolina School of Science and Math.The North Carolina School of Science and Math Copyright North Carolina Department.
Objectives: The student will be able to: Draw an accurate free body diagram locating each of the forces acting on an object or a system of objects. Use.
Chapter 8 Rotational Motion.
CLASS DAY 24 STRUCTURES 2 THE CONCEPT OF COMPONENTS Components are the parts of a Whole Distance, or a Whole Force, that help to define the magnitude.
Newton 2nd Law problems - Atwood Machines -Incline Planes -Tension Problems -Other Object Connected problems.
Dynamics: Newton’s Laws of Motion
ME 201 Engineering Mechanics: Statics Chapter 3 – Part A 3.1 Condition for the Equilibrium of a Particle 3.2 The Free-Body Diagram 3.3 Co-Planar Force.
ME 201 Engineering Mechanics: Statics
ROTATIONAL MOTION. What can force applied on an object do? Enduring Understanding 3.F: A force exerted on an object can cause a torque on that object.
CONTINUATION OF COMPONENTS OF FORCES Realize in these problems that a right triangle will represent a FORCE and the COMPONENTS of the force, when the.
Rotational or Angular Motion. When an object ’ s center of mass moves from one place to another, we call it linear motion or translational motion.
Rotational or Angular Motion. When an object ’ s center of mass moves from one place to another, we call it linear motion or translational motion.
ARCHITECTURE 2351 INTRODUCTION TO STRUCTURE CONCEPTS.
Lecture #6 Moments, Couples, and Force Couple Systems.
Chapter 8 Rotational Equilibrium and Rotational Dynamics
Copyright Sautter The next slide is a quick promo for my books after which the presentation will begin Thanks for your patience! Walt S.
Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina © 2014 Pearson Education, Inc.
Calculating Truss Forces
Newton’s third law of motion 1 Force 2
Tension and Compression in Trusses
Free Body Diagrams Free Body Diagrams Principles of EngineeringTM
ES2501: Statics/Unit 16-1: Truss Analysis: the Method of Joints
Analysis of Structures
Dynamics: Newton’s Laws of Motion
FORCES AND FREE BODY DIAGRAMS
Calculating Truss Forces
Introduction to Torque
Free Body Diagrams Free Body Diagrams Principles of EngineeringTM
Force and Motion A force is something that is capable of changing an object’s state of motion, that is, changing its velocity.
Putting it all Together
Beam Analysis We require from buildings two kinds of goodness: first, the doing their practical duty well: then that they be graceful and pleasing in doing.
Calculating Truss Forces
Beam Analysis Civil Engineering and Architecture
Calculating Truss Forces
Beam Analysis We require from buildings two kinds of goodness: first, the doing their practical duty well: then that they be graceful and pleasing in doing.
Chapter Objectives Chapter Outline To find forces in Truss by
Calculating Truss Forces
Introduction to Torque
Equilibrium Of a Rigid Body.
Calculating Truss Forces
Free Body Diagrams Principles of Engineering
Free Body Diagrams Principles of Engineering
Free Body Diagrams Principles of Engineering
Trusses and Load Analysis using Method of Joints
Presentation transcript:

The truss lesson for people that are pretty smart

Direction symbols: ⊥ =perpendicular (-)=negative (+)=positive ()=clockwise ()=counterclockwise member joint pin roller wall Force notation examples: F R B = reaction force exerted by joint B F A AC = force applied to member AC F A x = force applied to object in x direction F R y = reaction force exerted by object in y direction Force variables refer to the magnitude of the vector (a positive number, not the signed force) For your reference throughout the lesson:

Problem: Determine the forces on each joint and member. A B C y’ x’ θ˚ f lbs

Steps ① ∑m = 0 = m A + m R ② ∑F x = 0 = F A x + F R x ∑F y = 0 = F A y + F R y ③ (Same as 2) for each joint ④ Determine tension or compression For the entire structure

Step 1: Σm = 0 (balance the moments on the structure) m = Torque/Moment (Angular force) Think of torque as a force trying to rotate an object about a point P. Moment is measured in ft-lbs. To calculate angular force, use m = r ∙ F where r is the radius (distance to point P) ⊥ to F, the linear force P the applied force pretend it’s up here r F To find r, imagine rotating F around P so it is ⊥ to the object or member Imagine rotating the object around P so it is ⊥ to F P the applied force r F OR

Step 1.1 calculate applied torque/moment To find m A (the applied moment), “rotate” AC until the force is ⊥. r, or the distance to the fulcrum C, is x feet. m A = r ∙ F = x ∙ f = fx ft-lbs Direction: () clockwise or (-) This is the torque on the whole structure, about the fixed pin at C. Step 1.2 calculate reaction moment So fx ft-lbs are acting on the structure. To calculate the reaction to this, Use ∑m = 0 = m A + m R action reaction 0 = m R – fxm A is made (-) because it is () m R = fx () B A C x’ f B A C action reaction

Step 1.3 find the receiver of the reaction force We know that the initial applied force, m A, is exerted on point A. On what point is the reaction force exerted? Consider the force on A. It is clockwise, or acting in the negative direction. The only object in the negative direction of A linearly is the member AB, which is in the (-) x direction. The reaction force cannot originate in AB, however, because AB is not fixed. Because AB can only exert force in the x direction, we know the m A force is then exerted straight in the negative x direction, onto joint B. Joint B cannot push back, because it is not fixed. So point B continues to push in the negative x direction into the wall. We know the wall is fixed, so it is the source of the reaction force, and it exerts this force on the point B to counteract the applied moment. B A C action reaction

Step 1.4 convert reaction moment back to linear force We now know that m R = fx ft-lbs is acting on joint B. What is the linear reaction force exerted on B? Start with the moment equation: m R = r ∙ F from step 1.2 we know m R = fx ft-lbs fx ft ∙ 1 lbs = r ∙ F To find r, remember that the moment forces are acting on the structure about the fulcrum C. The reaction force is already ⊥ to the member BC, so the radius is simply the measure of BC, which is y ft. fx ft ∙ 1 lbs = y ft ∙ Fthe ft units cancel fx/y lbs = Fthe linear force on B (+), x B A C f lbs fx/y lbs

Step 2: ∑F x = 0, ∑F y = 0 (balance x and y forces on entire structure using a global free body diagram) Applied/action forces (exerted on objects) Reaction forces (exerted by objects) Member forces Component forces of angled vectors A B C Look at the whole structure and assign forces to the joints, drawing arrows. (see next slide)

Rules for drawing arrows ① Applied Forces Draw the force where it is applied initially (A). Then draw the m R reaction force on the roller (this is considered an applied force because it acts on B and is exerted by the wall rather than any object in the structure). Because the size and position of the arrows don’t matter for now, you can draw the applied forces so that they won’t overlap with members or components of other vectors. ② Reaction Forces The pin exerts the global reaction forces. (Mr. Kaluta spent a long time in class explaining why this is. If you don’t get it, just trust me.) Draw in the x and y directions, opposite the applied forces. ③ Member Forces At each joint, draw an arrow for each of the connected members. As a default, draw these arrows in tension (away from joints). This can be changed later (if an answer comes out negative, it means the arrow’s direction should be switched). ④ Component Forces Draw x & y components for each angled arrow.

3.1 Roller (B) transfer arrows from Global FBD Known: F A x = applied/action force = fx/y Balance & satisfy the equilibrium equations: ∑F x = 0 = F A x + F R x 0 = fx/y + F R x F R x = – fx/ynegative answer; change direction of F R x. ∑F y = 0 = F BC no force exists to counteract the y force change the F R x direction and type (to a reactionary force) Step 3: ∑F x = 0, ∑F y = 0 (balance x and y forces on each joint using local free body diagrams) B FAxFAx FRxFRx B fx/y 0 before after

B FRBFRB Put the new arrows in context. Every joint and member must have a net force of zero, so AB must react to the force exerted on it by B. Based on this you can determine the direction of the x force exerted by AB on A, and its magnitude (equal to F R B ). Understand that F R AB could be calculated using equilibrium equations, but they would be quite simple as a member can only push/pull in one direction. This step is simply used to determine the x force on A. Do it in your head and don’t over think it. F A AB A F R AB 3.15 Something to remember before we continue: The arrows you draw are purely conceptual. If you think too hard about them, you will realize that the source of the force doesn’t really matter, as objects can exert both pushing and pulling forces, and any push or pull will have an opposite and equal reaction force. However, because we are using the joint method, we are interested in the forces involving the joints. For our purposes, at the beginning of each step all previously calculated forces are considered applied forces, acting on the joints. The reaction forces, which we consider to be exerted by the joints, are then calculated to balance the applied forces. Keeping that in mind…

3.2 (A) Known: F A x = F R AB = F R B = fx/y, F A y = f ∑F x = 0 = F A x + F R x 0 = fx/y – F R x F R x made (-) because arrow points left F R x = fx/y ∑F y = 0 = F A y + F R y 0 = F R y – f F A y made (-) because arrow points down F R y = f Because both F R x and F R y came out positive, F R AC is in the right direction Find F R AC by solving one of the following equations: F R x = f = F R AC sinθF R y = fx/y = F R AC cos θF R AC = √ (F R y ) 2 + (F R x ) 2 (trig)(trig)(pythagorean) Though the pythagorean method can be used in this case, you may have to use one of the trig equations in another problem. Note the result of this step, at right. A FAxFAx FAyFAy θ˚ reaction force F R AC and its components, F R x and F R y F A x direction found in step 3.15, changed from the global FBD A f / sinθ fx/y f before after

C FAxFAx FAyFAy FAFA FRxFRx FRyFRy Note: the BC member force has been removed because step 3.1 found it was 0. Known: F A = f/sinθ (found by one of 3 equations in 3.2) Simple trig can be done to find that F A x and F A y are equal to the components from joint A. F A x = fx/y, F A y = f ∑F x = 0 = F A x + F R x 0 = fx/y – F R x F R x made (-) because arrow points left F R x = fx/y ∑F y = 0 = F A y + F R y 0 = F R y – f F A y made (-) because arrow points down F R y = f Again, both are positive, and therefore these arrows are in the correct directions. 3.3 (C)

Step 4: Find tension & compression Tension and Compression refer to the direction of the forces exerted by members or joints (reaction forces). Tension – the member or joint is exerting outwards from itself (push) Compression – the member or joint is exerting inwards, towards itself (pull) Put all non-zero member forces on the diagram. B is pulling in along AB. Compression. A is pulling in along AB. Compression. AB reacts to these forces by pulling in. Compression. BC is under 0 force. C is pushing out along AC. Tension. A is pushing out along AC. Tension. AC reacts by pushing out. Tension. Therefore AC is a string under tension and AB is a stick under compression. A B C

ANSWER. A B C f lbs f/sinθ 0 lbs fx/y f f/sinθ lbs of tension* fx/y lbs of compression* * I am not sure if these should be doubled. Anyone know? Also, I used f, x, y, and θ just to make this a general case. I do not recommend using these answers as formulas.

Questions, Comments, Corrections, Suggestions Please view this Google Doc (you don’t need a Google Docs account to view and edit)Google Doc Printable Version Click hereClick here to download a pretty printable version of the lesson. You can edit before you print out.