1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

Slides:



Advertisements
Similar presentations
Università degli Studi di Pisa IWCE-10 Purdue University 2004 M. Girlanda, I. Cacelli Dipartimento di Chimica e Chimica Industriale – Universita degli.
Advertisements

Gate Control of Spin Transport in Multilayer Graphene
Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai , Japan In collaboration with K. Esfarjani,
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Control of transport through Fano resonances in molecular wires T. A. Papadopoulos, I. M. Grace and C. J. Lambert Department of Physics, Lancaster University,
Frontier NanoCarbon Research group Research Center for Applied Sciences, Academia Sinica Applications of Graphitic Carbon Materials Dr. Lain-Jong Li (Lance.
Quantum transport beyond the independent-electron approximation Rex Godby.
Interfacing Molecules to Electronic Materials.
A. Pecchia, A. Di Carlo Dip. Ingegneria Elettronica, Università Roma “Tor Vergata”, Italy A. Gagliardi, Th. Niehaus, Th. Frauenheim Dep. Of Theoretical.
Huckel I-V 3.0: A Self-consistent Model for Molecular Transport with Improved Electrostatics Ferdows Zahid School of Electrical and Computer Engineering.
Screening of Water Dipoles inside Finite-Length Carbon Nanotubes Yan Li, Deyu Lu,Slava Rotkin Klaus Schulten and Umberto Ravaioli Beckman Institute, UIUC.
Title Transport Through Single Molecules: Resonant Transmission, Rectification, Spin Filtering, and Tunneling Magnetoresistance Harold U. Baranger, Duke.
Towards parameter-free device modeling
Transport Calculations with TranSIESTA
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
1 Tuning Molecule-mediated Spin Coupling in Bottom-up Fabricated Vanadium-TCNE Nanostructures Daniel Wegner Institute of Physics and Center for Nanotechnology.
SpiDME meeting, Nijmegen, May 2007 Stefano Sanvito and Nadjib Baadji Computational Spintronics Group School of Physics and CRANN, Trinity College.
Spin transport in spin-orbit coupled bands
"Spin currents in noncollinear magnetic structures: when linear response goes beyond equilibrium states"
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
School of Physics and Astronomy, University of Nottingham, UK
Magnetoresistance in oxydized Ni nanocontacts Department of Applied Physics, U. Alicante, SPAIN D. Jacob, J. Fernández-Rossier, J. J. Palacios
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Spin scattering by organic radicals P. LeClair Physics.
ITR/AP: Simulations of Open Quantum Systems with Application to Molecular Electronics Christopher Roland and Celeste Sagui Department of Physics, NC State.
Precision control of single molecule electrical junctions Iain Grace & Colin Lambert.
Step 3. Molecular junction between Au electrodes Current-Voltage (I-V) Characteristics Periodic QM (DFT) with surface Green’s function formalism Au I V.
G. S. Diniz and S. E. Ulloa Spin-orbit coupling and electronic transport in carbon nanotubes in external fields Department of Physics and Astronomy, Ohio.
An Introduction to Carbon Nanotubes
Do molecular rectifiers exist? Fatemeh Gholamrezaie June 2006 RuGRuG.
Start. Calculations for the electronic transport in molecular nanostructures Gotthard Seifert Institut für Physikalische Chemie und Elektrochemie Technische.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Organic Molecules on Insulating Surfaces Investigated by NC-AFM June 10 th, 2006 ETH Zurich, Switzerland Enrico Gnecco NCCR Nanoscale Science University.
Conductance of Single Molecular Junctions
Charge transport in DNA molecules: Structural and dynamical disorder 张伟 北京应用物理与计算研究所 2007 年 10 月.
The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.
Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin CCTN’05, Göteborg 2005.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
Institut für Theoretische Festkörperphysik (Universität Karlsruhe) and Universidad Autonoma de Madrid (Spain)
Conduction and Transmittance in Molecular Devices A. Prociuk, Y. Chen, M. Shlomi, and B. D. Dunietz GF based Landauer Formalism 2,3 Computing lead GF 4,5.
Sicily, May (2008) Conduction properties of DNA molecular wires.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
U Tor Vergata Charge transport in molecular devices Aldo Di Carlo, A. Pecchia, L. Latessa, M.Ghorghe* Dept. Electronic Eng. University of Rome “Tor Vergata”,
Electrical Transport and Current-driven Dynamics in Molecular Junctions Chao-Cheng Kaun ( 關肇正 ) Research Center for Applied Sciences Academia Sinica July.
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Introduction to Spintronics
Graphene-metal interface: an efficient spin and momentum filter
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
Quantum Capacitance Effects In Carbon Nanotube Field-Effect Devices
Stability and magnetism of infinite atomic chains Jaime Ferrer.
THE KONDO EFFECT IN CARBON NANOTUBES
Javier Junquera How to compute the projected density of states (PDOS)
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
G. S. Diniz 1, A. Latgé 2 and S. E. Ulloa 1 Spin manipulation in carbon nanotubes: All electrical spin filtering through spin-orbit interactions 1 Department.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Address: 2401 East building Guanghua tower Phone: Magnetic and spin polarized transport properties.
Spin transport at the atomic scale Alexandre Reily Rocha and Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin,
Contact Resistance Modeling in HEMT Devices
Lecture 7 DFT Applications
Nat. Rev. Mater. doi: /natrevmats
Carbon Nanotube Diode Design
Full Current Statistics in Multiterminal Mesoscopic Conductors
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany

2 MC Group Regensburg Carbon-based electronics A. Rochefort et al, PRB 60,13824 (1999) P. W. Chiu et al. Appl. Phys. Lett. 80,3811 (2002) H. Watanabe et al., Appl. Phys. Lett. 78, 2928 (2001) nanoscale electrodes

3 MC Group Regensburg Outline elastic transport k B T=0 Charge CNT-C 60 -CNT transport Spin FM-MWCNT-FM transport linear conductance Contact effects Structural modifications of the junction

4 MC Group Regensburg Methodology F. Grossmann, RG and R. Schmidt, ChemPhysChem 3, 101 (2002) Density-functional (DF)-based tight-binding approach: Expand eigenstates into valence LCAO basis Extended Hückel-like Hamiltonian ~ H ab,S ab via DFT G. Seifert and H. Eschrig Z. Phys. Chem. 267, 529 (1986) D. Porezag et al. Phys. Rev. B 51, (1995) Green function techniques 2-terminal Transmission T conductance g Elastic scattering Landauer

5 MC Group Regensburg CNT-C 60 -CNT junctions Motivation : C. Joachim et al. Phys. Rev. B 58, (1998) ~ compression J. J. Palacios et al. Nanotechnology 12, 160 (2001) ~ charge transfer doping Alternative way to modify the transmission ? Rotate the molecule RG, G. Fagas, G. Cuniberti, F. Grossmann, K. Richter, and R. Schmidt, Phys. Rev. B65, (2002)

6 MC Group Regensburg HOMO LUMO Structural optimization is essential Strong mixing of CNT-states with C60 molecular orbitals ~ lifting of degeneracies

7 MC Group Regensburg Strong orientational dependence of the conductance! ~ Variations of 2-3 orders of magnitude near E F

8 MC Group Regensburg Do the caps introduce something new ? Molecular state?

9 MC Group Regensburg Evolution of the projected DOS with increasing (a->d) CNT-C 60 separation PDOS on CNT-caps PDOS on C 60

10 MC Group Regensburg Molecular state? Metallisation via ”unconventional” MIGS pentagonal defect NO ! RG, G. Fagas,K. Richter, F. Grossmann and R. Schmidt, Europhys. Lett. 62, 90 (2003) Do the caps introduce something new ?

11 MC Group Regensburg Switching behaviour

12 MC Group Regensburg GMR in FM-MWCNT-FM junctions Experiments : K. Tsukagoshi et al. Nature 401, 572 (1999), B. Zhao et al. APL 80, 3141 (2002) Spin-coherent transport l s ~ 200 nm-1  m Negative GMR ~ 30 % DOS

13 MC Group Regensburg Co(111 ) Charge neutrality A minimal model No mixing of up- and down-spin channels electrodes ~ single-band model MWCNT ~  -orbitals, inter-wall inter. t in = const. ~ perfect interface matching

14 MC Group Regensburg Conductance(E F,t in =0) ~ 2G 0 for full contacted MWCNT expected value for infinite metallic DWCNT ~ 4G 0 (t in =0) channel blocking ~ charge transfer+CNT-metal contact symmetry Paramagnetic case P=0 ~4e 2 /h=2G 0 ~2e 2 /h=1G 0 see also e.g., S. Sanvito et al. Phys. Rev. Lett. 84, 1974 (2000); J. J. Palacios et al. Phys. Rev. Lett. 90, (2003)

15 MC Group Regensburg full contact: GMR < 0 partial contact: GMR > 0 GMR weakly affected by t in Charge neutrality essential S. Krompiewski, RG and G. Cuniberti, cond-mat/ Ferromagnetic case P=0.5

16 MC Group Regensburg Elastic transport Inelastic transport: electron-vibron coupling Keldysh NEGF techniques Incommensurability ~structural disorder charge spin CNT-C 60 -CNT (capped) CNT-C 60 -CNT GMR in FM-DWCNT-FM junctions

17 MC Group Regensburg G. Cuniberti (MC-Group,Uni Regensburg) G. Fagas (NMRC, Cork, Ireland, Poster) K. Richter (Uni Regensburg) S. Krompiewski (IfMP-Poznan, Poster) M. Hartung (Uni Regensburg, Poster) N. Ranjan (TU-Dresden, Poster) G. Seifert (TU Dresden, Talk Fri ) F. Grossmann (TU-Dresden) R. Schmidt (TU-Dresden) A. Di Carlo (Tor Vergata, Rome, Talk Wed ) A. Pecchia (Tor Vergata, Rome, Poster) M. Gheorghe (Uni Regensburg, Poster) C. Böhme (Uni Marburg) MPIPKS+ADMOL Acknowledgements