1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based.

Slides:



Advertisements
Similar presentations
Basic Concepts of Probability Probability Experiment: an action,or trial through which specific results are obtained. Results of a single trial is an outcome.
Advertisements

Pertemuan 03 Teori Peluang (Probabilitas)
Introduction to Probability Experiments, Outcomes, Events and Sample Spaces What is probability? Basic Rules of Probability Probabilities of Compound Events.
Introduction to Probability Experiments Counting Rules Combinations Permutations Assigning Probabilities.
Introduction to Probability
Chapter 4 Introduction to Probability
Chapter 4 Introduction to Probability
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Introduction to probability BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. 6.1 Chapter Six Probability.
Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of.
Business and Economics 7th Edition
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 4 __________________________ Introduction to Probability.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 4 Probability.
Chap 4-1 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 4 Probability.
PROBABILITY (6MTCOAE205) Chapter 2 Probability.
Chapter 4 Probability Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Introduction to Probability n Experiments and the Sample Space n Assigning Probabilities to Experimental Outcomes Experimental Outcomes n Events and Their.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide 統計學 Fall 2003 授課教師:統計系余清祥 日期: 2003 年 10 月 14 日 第五週:機率論介紹.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
Business and Finance College Principles of Statistics Eng
Introduction to Probability  Probability is a numerical measure of the likelihood that an event will occur.  Probability values are always assigned on.
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Probability is a numerical measure of the likelihood Probability is a numerical measure of the.
1 Slide Slide Probability is conditional. Theorems of increase of probabilities. Theorems of addition of probabilities.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Basic Concepts of Probability Coach Bridges NOTES.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
Introduction to Probability
Sample space the collection of all possible outcomes of a chance experiment –Roll a dieS={1,2,3,4,5,6}
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 4 Introduction to Probability n Experiments, Counting Rules, and.
1 Chapter 4 – Probability An Introduction. 2 Chapter Outline – Part 1  Experiments, Counting Rules, and Assigning Probabilities  Events and Their Probability.
BIOSTAT 3 Three tradition views of probabilities: Classical approach: make certain assumptions (such as equally likely, independence) about situation.
Probability You’ll probably like it!. Probability Definitions Probability assignment Complement, union, intersection of events Conditional probability.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
1 1 Slide Introduction to Probability Assigning Probabilities and Probability Relationships Chapter 4 BA 201.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved. Essentials of Business Statistics: Communicating with Numbers By Sanjiv Jaggia and.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
BIA 2610 – Statistical Methods
THE MATHEMATICAL STUDY OF RANDOMNESS. SAMPLE SPACE the collection of all possible outcomes of a chance experiment  Roll a dieS={1,2,3,4,5,6}
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
Sets and Probability Chapter 7. Ch. 7 Sets and Probabilities 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule 4-5 Multiplication.
1 1 Slide HJ copyrights Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities Assigning Probabilities n Events.
Bayes’ Theorem Suppose we have estimated prior probabilities for events we are concerned with, and then obtain new information. We would like to a sound.
Introduction To Probability
Chapter 4 - Introduction to Probability
Probability I.
Chapter 3 Probability.
Probability.
Probability I.
Chapter 4 Probability.
Probability I.
Statistics for 8th Edition Chapter 3 Probability
Probability I.
Probability I.
St. Edward’s University
Probability I.
St. Edward’s University
Presentation transcript:

1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based on the assumption Assigning probabilities based on the assumption of equally likely outcomes of equally likely outcomes Assigning probabilities based on experimentation Assigning probabilities based on experimentation or historical data or historical data Assigning probabilities based on judgment Assigning probabilities based on judgment

2 2 Slide © 2004 Thomson/South-Western Classical Method If an experiment has n possible outcomes, this method If an experiment has n possible outcomes, this method would assign a probability of 1/ n to each outcome. Experiment: Rolling a die Sample Space: S = {1, 2, 3, 4, 5, 6} Probabilities: Each sample point has a 1/6 chance of occurring 1/6 chance of occurring Example

3 3 Slide © 2004 Thomson/South-Western Each probability assignment is given by dividing the frequency (number of days) by the total frequency (total number of days). Relative Frequency Method 4/404/40 Probability Number of Polishers Rented Number of Days

4 4 Slide © 2004 Thomson/South-Western Subjective Method When economic conditions and a company’s When economic conditions and a company’s circumstances change rapidly it might be circumstances change rapidly it might be inappropriate to assign probabilities based solely on inappropriate to assign probabilities based solely on historical data. historical data. We can use any data available as well as our We can use any data available as well as our experience and intuition, but ultimately a probability experience and intuition, but ultimately a probability value should express our degree of belief that the value should express our degree of belief that the experimental outcome will occur. experimental outcome will occur. The best probability estimates often are obtained by The best probability estimates often are obtained by combining the estimates from the classical or relative combining the estimates from the classical or relative frequency approach with the subjective estimate. frequency approach with the subjective estimate.

5 5 Slide © 2004 Thomson/South-Western Some Basic Relationships of Probability There are some basic probability relationships that can be used to compute the probability of an event without knowledge of all the sample point probabilities. Complement of an Event Complement of an Event Intersection of Two Events Intersection of Two Events Mutually Exclusive Events Mutually Exclusive Events Union of Two Events

6 6 Slide © 2004 Thomson/South-Western The complement of A is denoted by A c. The complement of A is denoted by A c. The complement of event A is defined to be the event The complement of event A is defined to be the event consisting of all sample points that are not in A. consisting of all sample points that are not in A. The complement of event A is defined to be the event The complement of event A is defined to be the event consisting of all sample points that are not in A. consisting of all sample points that are not in A. Complement of an Event Event A AcAcAcAc Sample Space S Sample Space S VennDiagram

7 7 Slide © 2004 Thomson/South-Western The union of events A and B is denoted by A  B  The union of events A and B is denoted by A  B  The union of events A and B is the event containing The union of events A and B is the event containing all sample points that are in A or B or both. all sample points that are in A or B or both. The union of events A and B is the event containing The union of events A and B is the event containing all sample points that are in A or B or both. all sample points that are in A or B or both. Union of Two Events Sample Space S Sample Space S Event A Event B

8 8 Slide © 2004 Thomson/South-Western The intersection of events A and B is denoted by A  The intersection of events A and B is denoted by A  The intersection of events A and B is the set of all The intersection of events A and B is the set of all sample points that are in both A and B. sample points that are in both A and B. The intersection of events A and B is the set of all The intersection of events A and B is the set of all sample points that are in both A and B. sample points that are in both A and B. Sample Space S Sample Space S Event A Event B Intersection of Two Events Intersection of A and B

9 9 Slide © 2004 Thomson/South-Western The addition law provides a way to compute the The addition law provides a way to compute the probability of event A, or B, or both A and B occurring. probability of event A, or B, or both A and B occurring. The addition law provides a way to compute the The addition law provides a way to compute the probability of event A, or B, or both A and B occurring. probability of event A, or B, or both A and B occurring. Addition Law The law is written as: The law is written as: P ( A  B ) = P ( A ) + P ( B )  P ( A  B 

10 Slide © 2004 Thomson/South-Western The probability of an event given that another event The probability of an event given that another event has occurred is called a conditional probability. has occurred is called a conditional probability. The probability of an event given that another event The probability of an event given that another event has occurred is called a conditional probability. has occurred is called a conditional probability. A conditional probability is computed as follows : A conditional probability is computed as follows : The conditional probability of A given B is denoted The conditional probability of A given B is denoted by P ( A | B ). by P ( A | B ). The conditional probability of A given B is denoted The conditional probability of A given B is denoted by P ( A | B ). by P ( A | B ). Conditional Probability

11 Slide © 2004 Thomson/South-Western Multiplication Law The multiplication law provides a way to compute the The multiplication law provides a way to compute the probability of the intersection of two events. probability of the intersection of two events. The multiplication law provides a way to compute the The multiplication law provides a way to compute the probability of the intersection of two events. probability of the intersection of two events. The law is written as: The law is written as: P ( A  B ) = P ( B ) P ( A | B )

12 Slide © 2004 Thomson/South-Western Bayes’ Theorem NewInformationNewInformationApplication of Bayes’ TheoremApplication TheoremPosteriorProbabilitiesPosteriorProbabilitiesPriorProbabilitiesPriorProbabilities Often we begin probability analysis with initial or Often we begin probability analysis with initial or prior probabilities. prior probabilities. Then, from a sample, special report, or a product Then, from a sample, special report, or a product test we obtain some additional information. test we obtain some additional information. Given this information, we calculate revised or Given this information, we calculate revised or posterior probabilities. posterior probabilities. Bayes’ theorem provides the means for revising the Bayes’ theorem provides the means for revising the prior probabilities. prior probabilities.

13 Slide © 2004 Thomson/South-Western Bayes’ Theorem To find the posterior probability that event A i will To find the posterior probability that event A i will occur given that event B has occurred, we apply occur given that event B has occurred, we apply Bayes’ theorem. Bayes’ theorem. Bayes’ theorem is applicable when the events for Bayes’ theorem is applicable when the events for which we want to compute posterior probabilities which we want to compute posterior probabilities are mutually exclusive and their union is the entire are mutually exclusive and their union is the entire sample space. sample space.