1 InGrid: the integration of a grid onto a pixel anode by means of Wafer Post Processing technology 16 April 2008 Victor M. Blanco Carballo.

Slides:



Advertisements
Similar presentations
Microscale Device Fabrication: Electrochemical Deposition (EMD) of Metals By Mahmoud Hayat and Cerise McLaren.
Advertisements

Detector R&D Jan Timmermans Programme: ≥ 2003
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
M. Chefdeville NIKHEF, Amsterdam MPGD, Hawaii 07
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
TimePix / InGrid Problems and solutions Yevgen Bilevych Amsterdam
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #6.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
1 Microfabrication Technologies Luiz Otávio Saraiva Ferreira LNLS
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Read-out boards Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva.
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
Readout of a TPC with the MEDIPIX2 CMOS chip as direct anode Saclay/DapniaP. Colas Y. Giomataris NIKHEFA. Fornaini H. van der Graaf J. Timmermans J. Visschers.
Experience with resistive coatings at Saclay and Carleton, Nikhef, Neuchatel Use of resistive coatings for: -Spreading the charge to improve resolution.
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
Fabrication of Active Matrix (STEM) Detectors
Recent progress towards a Pixel-TPC 1. Objectives 2. New Structures (Ingrid,Twingrid,…) + Discharge Protection 3. Gas Studies 4. Testbeam at DESY (Medipix+3GEM)
Nano/Micro Electro-Mechanical Systems (N/MEMS) Osama O. Awadelkarim Jefferson Science Fellow and Science Advisor U. S. Department of State & Professor.
1 Silicon Pixel Readout for a TPC ALCPG Fermilab 23 October 2007 Jan Timmermans NIKHEF.
Ingrid devicesfor UV photon detection
Annual Meeting – October 8, Status of the CEA Saclay R&D activities on pixelised readout of TPC David Attié, Paul Colas,
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
Timepix-3 test All-ceramic InGrid The focusing TPC
GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay.
A. Chaus, D. Attie, P. Colas, M. Titov CEA Saclay, Irfu/SPP, France Ingrid OUTLINE: OUTLINE:  “Octopuce” Uniformity Studies in the Laboratory  DESY Test-Beam.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
EST-DEM R. De Oliveira 20 Dec., ‘04 Production of Gaseous Detector Elements  History of Gas Detectors in Workshop  Fabrication of GEM Detectors  Fabrication.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
21 April 2004LCWS 2004 Paris1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct pixel segmented anode) NIKHEF:
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
1 IBF in aligned, misaligned and FLOWER THGEMs The IBF problem Standard THGEM configuration COBRA and extra electrode Misaligned holes FLOWER THGEM solution.
Vertex09Jurriaan Schmitz - chip post- processing 1 GridPix – chip post processing Jurriaan Schmitz.
Atsuhiko Ochi Kobe University
1 Readout of a TPC by Means of the MediPix CMOS Pixel Sensor NIKHEFAuke-Pieter Colijn Arno Aarts Alessandro Fornaini Maximilien Chefdeville Harry van der.
23 March 2005International TPC R&D Meeting Berkeley 1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
Low Mass Rui de Oliveira (CERN) July
24/05/2010Rui De Oliveira1 Resistive protections for Bulk Micromegas Rui de oliveira, Joerg Wotschack Venetios Polychronakos.
©2008 R. Gupta, UCSD COSMOS Summer 2008 Chips and Chip Making Rajesh K. Gupta Computer Science and Engineering University of California, San Diego.
you me  when it all started to work  progress made  outlook.
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 The Silicon TPC System EUDET Extended SC meeting 31 August 2010 Jan Timmermans NIKHEF/DESY.
1 Status ‘Si readout’ TPC at NIKHEF NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
November 8, 2006ECFA ILC Workshop1 Recent developments for digital TPC readout Jan Timmermans - NIKHEF Micro Pattern Gas Detector: GridPix Integration.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
Giulio Pellegrini 12th RD50 - Workshop on Radiation hard semiconductor devices for very high luminosity colliders, Ljubljana, Slovenia, 2-4 June 2008 Report.
Innovative Micromegas manufacturing with Microfabrication techniques
Larger Pixels, New Insights
Large Prototype TPC using Micro-Pattern Gaseous Detectors
some thoughts on charging-up effects
Part-V Micropattern gaseous detectors
TimePix3 status and protection
Updates on the Micromegas + GEM prototype
Pixelized gaseous detectors
TPC Paul Colas Technical meeting, Lyon.
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Vertex Detector Overview Prototypes R&D Plans Summary.
TPC chamber for Medipix2/TimePix
Development of GEM at CNS
CSE 87 Fall 2007 Chips and Chip Making
Presentation transcript:

1 InGrid: the integration of a grid onto a pixel anode by means of Wafer Post Processing technology 16 April 2008 Victor M. Blanco Carballo

2 Overview Our wafer post processing requirements Concept and materials requirements Fabrication process Advanced processing Conclusions

3 Wafer post processing Use microelectronics to add functionalities Chip still functional after process -Temperature budget -Plasma damage -Stress Wafer level and chip level post-processing Suitable for Medipix, Timepix, Gosssipo, PSI-46…(general purpose process)

4 Integrated Micromegas Pixel pad Supporting pillar Grid Cathode Use the chip as electronics Perfect alignment holes to pixels No dead areas Geometry freedom No manual manufacturing CMOS chip

5 Materials for the structures SU-8 negative photoresist for insulating pillars –Easy to define structures by lithography –Low temperature process (below 95 °C) –Suitable thickness range (2μm to 1mm) –Insulating as Kapton foil (3MV/cm) –Some radiation hardness data available Aluminum for conductive grid –Commonly used in microelectronics –Easy to deposit –Easy to pattern –Low residual stress

6 InGrid: Integrated Grid 1)Pre-process chip 2)Spin SU-8 3)UV exposure 4)Deposit metal 5)Pattern metal 6)Develop resist

7 1) Pixel enlargement Increase sensitive area for better charge collection Pixel enlargement done by lift-off

8 2) a-Si deposition (Neuchatel) 30μm a-Si 3μm a-Si For later steps a-Si topography seems not to limit lithography performance

9 3) SU-8 supporting structures Pillars tipically ~50μm tall and 30μm diameter Sparsed according to the pitch of the chip

10 4)The integrated device -Chip+a-Si+grid supported by insullating pillars -Pillars in the middle of four pixels -Perfect alignment hole to pixel

11 Grid profile ~1μm variation in grid roughness Low gain fluctuations due to mechanical imperfections

12 And the system is robust - A scratch occurred during fabrication but system works -Several months working in Helium/Isobutane -Several months working in Argon/Isobutane

13 An homogeneous response No Moire effect Scratch in the grid Nut image after 55 Fe irradiation

14 Single electron counting possible Charge spread over chip area 55 Fe spectrum reconstructed from single electron counting and TOT mode

15 Electroplated grid Thicker and more robust grid possible Copper instead of aluminum Other materials possible by plating CMOS chip Unexposed SU-8 Exposed SU-8 Seed metal layer Molding resist Plated metal

16 TwinGrid 1)First InGrid 2)Deposit resist 3)UV exposure 4)Deposit metal 5)Pattern metal6)Develop structure

17 And it works Voltage on top grid, middle grid floating Next step integrate on a chip with voltage on both electrodes

18 Triple grid Follow same fabrication scheme Lower electric field facing the chip in Twingrid and triple grid -reduce spark risk? reduce a-Si thickness needed? Intentionally misaligned grids can reduce ion-back flow?

19 Conclusions Medipix/Timepix/Gossipo+a-Si+InGrid working Wafer and chip level processing possible Lot of freedom in the fabrication process GEM-like structures seem feasible

20 Special thanks to you and SC group (Tom, Arjen, Bijoy, Jurriaan, Joost, Jiwu,Sander,Cora) Mesa+ lab (Dominique, Hans) NIKHEF(Max,Martin,Yevgen,Jan,Joop,Harry, Fred) Philips (Eugene) NXP (Rob) STW

21

22 SU-8 radiation hardness Mylar fluence of n cm2 ~ dose 10 6 –10 7 Gy

23 And they look great in 3D

24 2D tracks projections Cosmic rays Strontium

25

26

27