Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General.

Slides:



Advertisements
Similar presentations
Stationary Probability Vector of a Higher-order Markov Chain By Zhang Shixiao Supervisors: Prof. Chi-Kwong Li and Dr. Jor-Ting Chan.
Advertisements

Modeling and Dimensioning of Mobile Networks: from GSM to LTE
Lecture 6  Calculating P n – how do we raise a matrix to the n th power?  Ergodicity in Markov Chains.  When does a chain have equilibrium probabilities?
Flows and Networks Plan for today (lecture 2): Questions? Continuous time Markov chain Birth-death process Example: pure birth process Example: pure death.
1 Chapter 5 Continuous time Markov Chains Learning objectives : Introduce continuous time Markov Chain Model manufacturing systems using Markov Chain Able.
Discrete Time Markov Chains
TCOM 501: Networking Theory & Fundamentals
IEG5300 Tutorial 5 Continuous-time Markov Chain Peter Chen Peng Adapted from Qiwen Wang’s Tutorial Materials.
Copyright © 2005 Department of Computer Science CPSC 641 Winter Markov Chains Plan: –Introduce basics of Markov models –Define terminology for Markov.
Flows and Networks (158052) Richard Boucherie Stochastische Operations Research -- TW wwwhome.math.utwente.nl/~boucherierj/onderwijs/158052/ html.
6.896: Probability and Computation Spring 2011 Constantinos (Costis) Daskalakis lecture 2.
Workshop on Stochastic Differential Equations and Statistical Inference for Markov Processes Day 1: January 19 th, Day 2: January 28 th Lahore University.
Lecture 13 – Continuous-Time Markov Chains
Solutions to group exercises 1. (a) Truncating the chain is equivalent to setting transition probabilities to any state in {M+1,...} to zero. Renormalizing.
048866: Packet Switch Architectures Dr. Isaac Keslassy Electrical Engineering, Technion Review.
TCOM 501: Networking Theory & Fundamentals
If time is continuous we cannot write down the simultaneous distribution of X(t) for all t. Rather, we pick n, t 1,...,t n and write down probabilities.
2003 Fall Queuing Theory Midterm Exam(Time limit:2 hours)
1 TCOM 501: Networking Theory & Fundamentals Lecture 7 February 25, 2003 Prof. Yannis A. Korilis.
Queuing Networks: Burke’s Theorem, Kleinrock’s Approximation, and Jackson’s Theorem Wade Trappe.
1 TCOM 501: Networking Theory & Fundamentals Lecture 8 March 19, 2003 Prof. Yannis A. Korilis.
1 Markov Chains H Plan: –Introduce basics of Markov models –Define terminology for Markov chains –Discuss properties of Markov chains –Show examples of.
Lecture 7  Poisson Processes (a reminder)  Some simple facts about Poisson processes  The Birth/Death Processes in General  Differential-Difference.
Queuing Networks. Input source Queue Service mechanism arriving customers exiting customers Structure of Single Queuing Systems Note: 1.Customers need.
Flows and Networks Plan for today (lecture 5): Last time / Questions? Waiting time simple queue Little Sojourn time tandem network Jackson network: mean.
Flows and Networks Plan for today (lecture 5): Last time / Questions? Blocking of transitions Kelly / Whittle network Optimal design of a Kelly / Whittle.
Generalized Semi-Markov Processes (GSMP)
1 Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Flows and Networks Plan for today (lecture 6): Last time / Questions? Kelly / Whittle network Optimal design of a Kelly / Whittle network: optimisation.
Networks of Queues Plan for today (lecture 6): Last time / Questions? Product form preserving blocking Interpretation traffic equations Kelly / Whittle.
Queuing Theory Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Chapter.
Flows and Networks Plan for today (lecture 4): Last time / Questions? Output simple queue Tandem network Jackson network: definition Jackson network: equilibrium.
Modeling and Analysis of Computer Networks
1 Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Networks Plan for today (lecture 8): Last time / Questions? Quasi reversibility Network of quasi reversible queues Symmetric queues, insensitivity Partial.
1 Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Generalized Semi- Markov Processes (GSMP). Summary Some Definitions The Poisson Process Properties of the Poisson Process  Interarrival times  Memoryless.
Markov Chains X(t) is a Markov Process if, for arbitrary times t1 < t2 < < tk < tk+1 If X(t) is discrete-valued If X(t) is continuous-valued i.e.
Chapter 61 Continuous Time Markov Chains Birth and Death Processes,Transition Probability Function, Kolmogorov Equations, Limiting Probabilities, Uniformization.
Model under consideration: Loss system Collection of resources to which calls with holding time  (c) and class c arrive at random instances. An arriving.
CS433 Modeling and Simulation Lecture 07 – Part 01 Continuous Markov Chains Dr. Anis Koubâa 14 Dec 2008 Al-Imam.
Flows and Networks Plan for today (lecture 6): Last time / Questions? Kelly / Whittle network Optimal design of a Kelly / Whittle network: optimisation.
Network Design and Analysis-----Wang Wenjie Queueing Theory II: 1 © Graduate University, Chinese academy of Sciences. Network Design and Performance Analysis.
CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes.
1 Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Chapter 6 Product-Form Queuing Network Models Prof. Ali Movaghar.
Flows and Networks (158052) Richard Boucherie Stochastische Operations Research -- TW wwwhome.math.utwente.nl/~boucherierj/onderwijs/158052/ html.
CS433 Modeling and Simulation Lecture 11 Continuous Markov Chains Dr. Anis Koubâa 01 May 2009 Al-Imam Mohammad Ibn Saud University.
Flows and Networks Plan for today (lecture 3): Last time / Questions? Output simple queue Tandem network Jackson network: definition Jackson network: equilibrium.
Flows and Networks Plan for today (lecture 6): Last time / Questions? Kelly / Whittle network Optimal design of a Kelly / Whittle network: optimisation.
Flows and Networks (158052) Richard Boucherie Stochastische Operations Research -- TW wwwhome.math.utwente.nl/~boucherierj/onderwijs/158052/ html.
Networks (3TU) Plan for today (lecture 5): Last time / Questions? Tandem network Jackson network: definition Jackson network: equilibrium distribution.
Markov Chains.
Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Markov Chains and Random Walks
Flows and Networks Plan for today (lecture 3):
Much More About Markov Chains
Flows and Networks Plan for today (lecture 4):
CTMCs & N/M/* Queues.
Finite M/M/1 queue Consider an M/M/1 queue with finite waiting room.
Markov Chains Carey Williamson Department of Computer Science
Lecture 7 Poisson Processes (a reminder)
Lecture 4: Algorithmic Methods for G/M/1 and M/G/1 type models
Flows and Networks Plan for today (lecture 6):
Networks of queues Networks of queues reversibility, output theorem, tandem networks, partial balance, product-form distribution, blocking, insensitivity,
Flows and Networks Plan for today (lecture 6):
Queueing networks.
Carey Williamson Department of Computer Science University of Calgary
Probability Fundamentals
CS723 - Probability and Stochastic Processes
Presentation transcript:

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Last time on Flows and Networks: Highlights: continuous time Markov chain stochastic process X(t) countable or finite state space S Markov property transition rates independent t irreducible: each state in S reachable from any other state in S Assume ergodic and regular global balance equations (equilibrium eqns) π is stationary distribution solution that can be normalised is equilibrium distribution if equilibrium distribution exists, then it is unique and is limiting distribution

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Birth-death process State space Markov chain, transition rates Bounded state space: q(J,J+1)=0 then states space bounded above at J q(I,I-1)=0 then state space bounded below at I Kolmogorov forward equations Global balance equations

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Example: pure birth process Exponential interarrival times, mean 1/  Arrival process is Poisson process Markov chain? Transition rates : let t0<t1<…<tn<t Kolmogorov forward equations for P(X(0)=0)=1 Solution for P(X(0)=0)=1

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Example: pure death process Exponential holding times, mean 1/  P(X(0)=N)=1, S={0,1,…,N} Markov chain? Transition rates : let t0<t1<…<tn<t Kolmogorov forward equations for P(X(0)=N)=1 Solution for P(X(0)=N)=1

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Simple queue Poisson arrival proces rate , single server exponential service times, mean 1/  Assume initially empty: P(X(0)=0)=1, S={0,1,2,…,} Markov chain? Transition rates :

Simple queue Poisson arrival proces rate , single server exponential service times, mean 1/  Kolmogorov forward equations, j>0 Global balance equations, j>0

Simple queue (ctd)    j j+1   Equilibrium distribution:  <  Stationary measure; summable  eq. distrib. Proof: Insert into global balance Detailed balance!

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Birth-death process State space Markov chain, transition rates Definition: Detailed balance equations Theorem: A distribution that satisfied detailed balance is a stationary distribution Theorem: Assume that then is the equilibrium distrubution of the birth-death prcess X.

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Reversibility; stationarity Stationary process: A stochastic process is stationary if for all t1,…,tn,  Theorem: If the initial distribution is a stationary distribution, then the process is stationary Reversible process: A stochastic process is reversible if for all t1,…,tn,  NOTE: labelling of states only gives suggestion of one dimensional state space; this is not required

Reversibility; stationarity Lemma: A reversible process is stationary. Theorem: A stationary Markov chain is reversible if and only if there exists a collection of positive numbers π(j), j  S, summing to unity that satisfy the detailed balance equations When there exists such a collection π(j), j  S, it is the equilibrium distribution Proof

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Lemma 1.9 / Corollary 1.10: If the transition rates of a reversible Markov process with state space S and equilibrium distribution are altered by changing q(j,k) to cq(j,k) for where c>0 then the resulting Markov process is reversible in equilibrium and has equilibrium distribution where B is the normalizing constant. If c=0 then the reversible Markov process is truncated to A and the resulting Markov process is reversible with equilibrium distribution Truncation of reversible processes 10 A S\A

Time reversed process X(t) reversible Markov process  X(-t) also, but Lemma 1.11: tijdshomogeneity not inherited for non- stationary process Theorem 1.12 : If X(t) is a stationary Markov process with transition rates q(j,k), and equilibrium distribution π(j), j  S, then the reversed process X(  - t) is a stationary Markov process with transition rates and the same equilibrium distribution Theorem 1.13: Kelly’s lemma Let X(t) be a stationary Markov processwith transition rates q(j,k). If we can find a collection of numbers q’(j,k) such that q’(j)=q(j), j  S, and a collection of positive numbers  (j), j  S, summing to unity, such that then q’(j,k) are the transition rates of the time- reversed process, and  (j), j  S, is the equilibrium distribution of both processes.

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Kolmogorov’s criteria Theorem 1.8: A stationary Markov chain is reversible iff for each finite sequence of states Notice that

Flows and Networks Plan for today (lecture 2): Questions? Birth-death process Example: pure birth process Example: pure death process Simple queue General birth-death process: equilibrium Reversibility, stationarity Truncation Kolmogorov’s criteria Summary / Next Exercises

Summary / next: Birth-death process Simple queue Reversibility, stationarity Truncation Kolmogorov’s criteria Next input / output simple queue Poisson proces PASTA Output simple queue Tandem netwerk

Exercises [R+SN] 1.3.2, 1.3.3, 1.3.5, 1.5.1, 1.5.2, 1.5.5, 1.6.2, 1.6.3, 1.6.4