Experimental Study of Nucleon Structure and QCD J. P. Chen, Jefferson Lab Workshop on Confinement Physics, March 12, 2012  Introduction  Selected JLab.

Slides:



Advertisements
Similar presentations
December 17, 2004 JLab Hall A Upgrade 1 Semi-Inclusive DIS --opportunities at JLab upgrade Feng Yuan RBRC, Brookhaven National Laboratory.
Advertisements

Study Neutron Spin Structure with a Solenoid Jian-ping Chen, Jefferson Lab Hall A Collaboration Meeting June 22-23, 2006 Inclusive DIS: Valence quark spin.
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
Spin Structure with JLab 6 and 12 GeV J. P. Chen, Jefferson Lab INT-12-49W: Workshop on Orbital Angular Momentum in QCD, Feb. 6, 2011  Overview  Selected.
TMDs and PVDIS: JLab 6 GeV results and 12 GeV Plan J. P. Chen, Jefferson Lab APFB2014, Hahndorf, Australia, April 7-11, 2014  TMDs with 6 GeV JLab: Exploration.
Transverse Spin and TMDs Jian-ping Chen, Jefferson Lab EIC Workshop at INT09, Oct.19-23, 2009  Introduction: why do we care about transverse structure?
Parton Distributions at High x J. P. Chen, Jefferson Lab DNP Town Meeting, Rutgers, Jan , 2007  Introduction  Unpolarized Parton Distribution at.
Simulations of Single-Spin Asymmetries from EIC Xin Qian Kellogg, Caltech EIC Meeting at CUA, July 29-31, TMD in SIDIS 2.Simulation of SIDIS.
Semi-inclusive DIS Physics with SoLID J. P. Chen, Jefferson Lab Hall A&C Collaboration Meeting, JLab, June 5-6, 2014  Introduction  Spin-flavor and SIDIS.
1 Updates on Transversity Experiments and Interpretations Jen-Chieh Peng Transversity Collaboration Meeting, JLab, March 4, 2005 University of Illinois.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Experimental Study of Single Spin Asymmetries and TMDs Jian-ping Chen, Jefferson Lab QCD Evolution Workshop, JLab, May 6-10, 2013  Recent SSA Results.
Highlights and Perspectives of both Longitudinal and Transverse Spin Program at JLab J. P. Chen, Jefferson Lab, Virginia Los Alamos, February.
Highlights of Spin Study at JLab Hall A: Longitudinal and Transverse J. P. Chen, Jefferson Lab Pacific-Spin2011, Cairns, Australia  Introduction  Longitudinal.
New results on Neutron Single Target Spin Asymmetries from Transversely polarized 3 He target at Jlab Nilanga Liyanage, University of Virginia  Recent.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Working Group C: Hadronic Final States David Milstead The University of Liverpool Review of Experiments 27 experiment and 11 theory contributions.
Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv: [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory.
High-Energy QCD Spin Physics Xiangdong Ji Maryland Center for Fundamental Physics University of Maryland DIS 2008, April 7, 2008, London.
1 Transversely polarized target for CLAS and CLAS12  Introduction  Structure of nucleon and 3D parton distributions  Semi-Inclusive processes and TMD.
Spin-Flavor Decomposition J. P. Chen, Jefferson Lab PVSA Workshop, April 26-27, 2007, Brookhaven National Lab  Polarized Inclusive DIS,  u/u and  d/d.
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
Probing the Fundamental Structure of the Nuclear Building Blocks with Jlab 12 GeV Upgrade Xiangdong Ji University of Maryland — Jlab 12 GeV upgrade review,
Highlights of JLab Neutron ( 3 He) Spin Program J. P. Chen, Jefferson Lab Workshop on Spin at Long Distance, March 12-13, 2009  Introduction  Highlights.
Thomas Jefferson National Accelerator Facility R. D. McKeown Slide 1 R. D. McKeown Jefferson Lab College of William and Mary The 12 GeV Science Program.
Zhongbo Kang Los Alamos National Laboratory QCD structure of the nucleon and spin physics Lecture 5 & 6: TMD factorization and phenomenology HUGS 2015,
Spin Study at JLab: from Longitudinal to Transverse
Spin physics at the SMC Spin Muon Collaboration A. Magnon (CEA-Saclay/IRFU & COMPASS)
Harut Avakian 1 H. Avakian, JLab, Sep 5 Rich Technical Review, 5 th September 2013 Kaon physics with CLAS12 Introduction Kaons in SIDIS Medium effects.
General Discussion some general remarks some questions.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
The Quark Structure of the Nucleon Inti Lehmann & Ralf Kaiser University of Glasgow Cosener’s House Meeting 23/05/2007 Nucleon Structure Generalised Parton.
1 Probing Spin and Flavor Structures of the Nucleon with Hadron Beams Flavor and spin structures of the nucleons –Overview and recent results Future prospects.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Challenges of the Standard Model and the Nucleon Spin Puzzle Thomas Jefferson National Accelerator Facility (JLab) Recent Results from JLab Spin Program.
1 Harut Avakian Studies on transverse spin effects at Jlab QCD Structure of the Nucleon June 12-16, 2006, Rome Physics motivation k T -effects from unpolarized.
Overview of the SoLID Experiments Jian-ping Chen, Jefferson Lab JLab Users Group Meeting, June 3, 2015  Introduction  Approved Experiments (5 + 2 run.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Study Transverse Spin and TMDs with SIDIS Experiments J. P. Chen, Jefferson Lab Hall A Physics Workshop, December 14, 2011  Introduction  Transverse.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Anthony.
For SoLID Collaboration Meeting Spokespersons Jian-Ping Chen (JLab) Jin Huang (MIT) Yi Qiang (JLab) Wenbiao Yan (USTC, China)
Contalbrigo Marco INFN Ferrara ECT* Workshop - Lattice QCD and Hadron Physics 15 th January 2014, Trento.
Overview of Jefferson Lab’s Spin Physics Programme Stephen Bültmann - ODU RHIC/AGS Users Meeting, June 2007 Introduction Experimental Setup Asymmetry Measurement.
Nilanga Liyanage University of Virginia For Jefferson Lab Hall A, CLAS and RSS Collaborations.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Latest results from COMPASS TMD physics Anna Martin Trieste University & INFN on behalf of the COMPASS Collaboration.
Delia Hasch Transversity & friends from HERMES International workshop on hadron and spectroscopy, Torino, Italy, 31. March – 02. April 2008 outline outline.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
The Spin Physics Program at Jefferson Lab Sebastian Kuhn Old Dominion University e e PtPt PePe.
Nucleon spin physics with CLAS at Jlab Fifth International Conference on PERSPECTIVES IN HADRONIC PHYSICS Particle-Nucleus and Nucleus-Nucleus Scattering.
Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012  Introduction.
Experimental Studies of Spin Duality P. Bosted (JLab) Jlab Users Meeting, June 2005  Bloom-Gilman duality in inclusive g 1  Factorization in polarized.
Studies of the transverse structure of the nucleon at JLab Marco Mirazita INFN – Laboratori Nazionali di Frascati INPC2013 – Firenze, 2-7 June
6/28/20161 Future Challenges of Spin Physics Feng Yuan Lawrence Berkeley National Laboratory.
Single Target Spin Asymmetries and GPDs Jian-ping Chen, Jefferson Lab, Virginia, USA SSA Workshop, BNL, June 1-3, 2005 Nucleon structure and GPDs DVCS.
1 Transversity Experiments Experimental probes for transversity Current experimental status on transversity and other related distribution and fragmentation.
A sideways look into the proton Transverse momentum and transverse spin in QCD Alessandro Bacchetta.
Example 3 Slides for PAC. Measurement of Target Single Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering with 3 He Map Collins moments to provide.
Spin Structure of the Nucleon
Neutron Transverse Spin Structure
Higher twist effects in polarized experiments
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Selected Physics Topics at the Electron-Ion-Collider
Presentation transcript:

Experimental Study of Nucleon Structure and QCD J. P. Chen, Jefferson Lab Workshop on Confinement Physics, March 12, 2012  Introduction  Selected JLab 6 GeV Experimental Results  Spin Distributions in the High-x (Valence Quark) Region and Quark-Hadron Duality  Moments of Spin Structure Functions: Spin Sum Rules and Polarizabilities  Transverse Spin, TMDs  Planned Experiments with JLab 12 GeV

QCD: still unsolved in non-perturbative region 2004 Nobel prize for ``asymptotic freedom’’ non-perturbative regime QCD ? Confinement: one of the top 10 challenges for physics! QCD: Important for discovering new physics beyond SM Nucleon structure is one of the most active areas

Introduction Quarks/Gulons are confined in hadron To study/understand confinement: both static (spectroscopy) and dynamics Nucleon: an ideal laboratory to study strong interaction (QCD) Nucleon = valence quarks (u u d or u d d) + sea + gluons Mass, charge, magnetic moment, spin, axial charge, tensor charge Decomposition of each of the fundamental quantities Mass: ~1 GeV, but u/d quark mass only a few MeV each! Momentum: quarks carry ~ 50% Spin: ½, quarks contribute ~30% Spin Sum Rule Orbital Angular Momentum Relations to TMDs and GPDs Tensor charge Lattice QCD Quarks and gluon field are in-separable Multi-parton correlations are important Transverse dimension is crucial for understanding nucleon structure and QCD, help understanding confinement Elastic (Form Factors), Resonances, DIS, Spin, Transverse Spin, TMDs, GPDs

Three Decades of Spin Structure Study 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small  = ( )% ! ‘spin crisis’ ( Ellis-Jaffe sum rule violated) 1990s: SLAC, SMC (CERN), HERMES (DESY)  = 20-30% the rest: gluon and quark orbital angular momentum A + =0 (light-cone) gauge (½)  + L q +  G + L g =1/2 (Jaffe) gauge invariant (½)  + Lq + J G =1/2 (Ji) New decomposition (X. Chen, et. Al, Wakamatsu, …) What observable directly corresponds to L z ~ b x X p y ? Bjorken Sum Rule verified to <10% level 2000s: COMPASS (CERN), HERMES, RHIC-Spin, JLab, … :  ~ 30%;  G probably small, orbital angular momentum probably significant  Valence Quark Spin Distributions  Sum Rules at low Q 2, Higher-Twists  Transversity, Transverse-Momentum Dependent Distributions

JLab Spin Experiments Results: Spin in the valence (high-x) region Spin (g 1 /g 2 ) Moments: Spin Sum Rules, Spin Polarizabilities SSA in SIDIS: Transversity, TMDs On-going g 2 p at low Q 2 Future: 12 GeV Inclusive: A 1 /d 2, Semi-Inclusive: Transversity, TMDs, Flavor-decomposition Reviews: S. Kuhn, J. P. Chen, E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009)

Valence Quark Spin Structure A 1 at high x and flavor decomposition

Why Are PDFs at High x Important? Valence quark dominance: simpler picture -- direct comparison with nucleon structure models SU(6) symmetry, broken SU(6), diquark x  1 region amenable to pQCD analysis -- hadron helicity conservation? role of quark orbit angular momentum? Clean connection with QCD, via lattice moments (d 2 ) Input for search for new physics at high energy collider -- evolution: high x at low Q 2  low x at high Q 2 -- small uncertainties amplified -- example: HERA ‘anomaly’ (1998)

World data for A 1 Proton Neutron

JLab E Precision Measurement of A 1 n at Large x Spokespersons: J. P. Chen, Z. Meziani, P. Souder; PhD Student: X. Zheng First precision A 1 n data at high x Extracting valence quark spin distributions Test our fundamental understanding of valence quark picture SU(6) symmetry Valence quark models pQCD (with HHC) predictions Quark orbital angular momentum Crucial input for pQCD fit to PDF PRL 92, (2004) PRC 70, (2004)

Polarized Quark Distributions Combining A 1 n and A 1 p results Valence quark dominating at high x u quark spin as expected d quark spin stays negative! Disagree with pQCD model calculations assuming HHC (hadron helicity conservation) Quark orbital angular momentum Consistent with valence quark models and pQCD PDF fits without HHC constraint

Inclusive Hall A and B and Semi-Inclusive Hermes BBS BBS+OAM H. Avakian, S. Brodsky, A. Deur, and F. Yuan, PRL 99, (2007) pQCD with Quark Orbital Angular Momentum

Spin-Structure in Resonance Region: E Study Quark-Hadorn Duality Spokesperson: N. Liyanage, J. P. Chen, S. Choi; PhD Student: P. Solvignon PRL 101, (2008) A 1 3He (resonance vs DIS)  1 resonance vs. pdfs xQ2Q2 x

A 1 p at 11 GeV (CLAS12) Projections for JLab at 11 GeV A 1 n at 11 GeV (Hall C/A)

Moments of Spin Structure Functions Sum Rules, Polarizabilities

First Moment of g 1 p :  1 p EG1b, arXiv: EG1a, PRL 91, (2003) Spokespersons: V. Burkert, D. Crabb, G. Dodge, 1p1p Total Quark Contribution to Proton Spin (at high Q 2 ) Twist expansion at intermediate Q 2, LQCD, ChPT at low Q 2

First Moment of g 1 n :  1 n E94-010, PRL 92 (2004) E97-110, preliminary EG1a, from d-p 1n1n

 1 of p-n EG1b, PRD 78, (2008) E EG1a: PRL 93 (2004)

Effective Coupling Extracted from Bjorken Sum s/s/ A. Deur, V. Burkert, J. P. Chen and W. Korsch PLB 650, 244 (2007) and PLB 665, 349 (2008)

Second Spin Structure Function g 2 Burkhardt - Cottingham Sum Rule Spin Polarizabilities

Precision Measurement of g 2 n (x,Q 2 ): Search for Higher Twist Effects Measure higher twist  quark-gluon correlations. Hall A Collaboration, K. Kramer et al., PRL 95, (2005)

Preliminary results on neutron from E Spokespersons: J. P. Chen, S. Choi, N. Liyanage, plots by P. Solvignon

Burkhardt - Cottingham Sum Rule P N 3 He BC = Meas+low_x+Elastic 0<X<1 :Total Integral very prelim “low-x”: refers to unmeasured low x part of the integral. Assume Leading Twist Behaviour Elastic: From well know FFs (<5%) “Meas”: Measured x-range Brawn: SLAC E155x Red: Hall C RSS Black: Hall A E Green: Hall A E (preliminary) Blue: Hall A E (spokespersons: N. Liyanage, former student, JPC) (preliminary)

BC Sum Rule P N 3 He BC satisfied w/in errors for 3 He BC satisfied w/in errors for Neutron (But just barely in vicinity of Q 2 =1!) BC satisfied w/in errors for JLab Proton 2.8  violation seen in SLAC data very prelim

Neutron Spin Polarizabilities   LT insensitive to  resonance RB ChPT calculation with resonance for  0 agree with data at Q 2 =0.1 GeV 2 Significant disagreement between data and both ChPT calculations for  LT Good agreement with MAID model predictions  0  LT Q2 Q2 Q2 Q2 E94-010, PRL 93 (2004)

Spin Polarizabilities Preliminary E (and Published E94-010) Spokesperson: J. P. Chen, A. Deur, F. Garibaldi, plots by V. Sulkosky Significant disagreement between data and both ChPT calculations for  LT Good agreement with MAID model predictions  0  LT Q2 Q2 Q2 Q2

Axial Anomaly and the  LT Puzzle N. Kochelev and Y. Oh; arXiv: v1

E : Proton g 2 Structure Function Fundamental spin observable has never been measured at low or moderate Q 2 BC Sum Rule : violation suggested for proton at large Q 2, but found satisfied for the neutron & 3 He. Spin Polarizability : Major failure (>8  of  PT for neutron  LT. Need g 2 isospin separation to solve. Hydrogen HyperFine Splitting : Lack of knowledge of g 2 at low Q 2 is one of the leading uncertainties. Proton Charge Radius : also one of the leading uncertainties in extraction of from  H Lamb shift. BC Sum Rule Spokespersons: Camsonne, Chen, Crabb, Slifer(contact), 6 PhD students, 3 postdocs Running until 5/2012 Spin Polarizability  LT

Single Target-Spin Asymmetries in SIDIS Transversity/Tensor Charge

Transversity Three twist-2 quark distributions: Momentum distributions: q(x,Q 2 ) = q ↑ (x) + q ↓ (x) Longitudinal spin distributions: Δq(x,Q 2 ) = q ↑ (x) - q ↓ (x) Transversity distributions: δq(x,Q 2 ) = q ┴ (x) - q ┬ (x) It takes two chiral-odd objects to measure transversity Semi-inclusive DIS Chiral-odd distributions function (transversity) Chiral-odd fragmentation function (Collins function) TMDs: (without integrating over P T ) Distribution functions depends on x, k ┴ and Q 2 : δq, f 1T ┴ (x, k ┴,Q 2 ), … Fragmentation functions depends on z, p ┴ and Q 2 : D, H 1 (x,p ┴,Q 2 ) Measured asymmetries depends on x, z, P ┴ and Q 2 : Collins, Sivers, … (k ┴, p ┴ and P ┴ are related)

Leading-Twist TMD PDFs f 1 = f 1T  = Sivers Helicity g 1 = h1 =h1 = Transversity h1 =h1 =Boer-Mulders h 1T  = Pretzelosity h 1L  = Worm Gear (Longi-Tranversity) : Survive trans. Momentum integration Nucleon Spin Quark Spin g 1T = Worm Gear Worm GearTrans-Helicity

W p u (x,k T,r ) Wigner distributions d2kTd2kT PDFs f 1 u (x),.. h 1 u (x)‏ GPDs d 2 k T dr z d3rd3r TMDs f 1 u (x,k T ),.. h 1 u (x,k T )‏ 3D imaging 6D Dist. Form Factors G E (Q 2 ), G M (Q 2 )‏ d2rTd2rT dx & Fourier Transformation 1D

Separation of Collins, Sivers and pretzelocity effects through angular dependence

Transverity2011 Franco Bradamante COMPASS Sivers asymmetry 2010 data x > region - comparison with HERMES results NEW

Status of Transverse Spin Study Large single spin asymmetry in pp->  X Collins Asymmetries - sizable for the proton (HERMES and COMPASS) large at high x,  - and  has opposite sign  unfavored Collins fragmentation as large as favored (opposite sign)? - consistent with 0 for the deuteron (COMPASS) Sivers Asymmetries - non-zero for  + from proton (HERMES), new COMPASS data - consistent with zero for  - from proton and for all channels from deuteron - large for K + ? Collins Fragmentation from Belle Global Fits/models: Anselmino, Prokudin et al., Vogelsang/Yuan et al., Pasquini et al., Ma et al., … Very active theoretical and experimental efforts RHIC-spin, JLab (6 GeV and 12 GeV), Belle, FAIR, J-PARC, EIC, … First neutron measurement from Hall A 6 GeV (E06-010) Solenoid with polarized 3 He at JLab 12 GeV Unprecedented precision with high luminosity and large acceptance

E He Target Single-Spin Asymmetry in SIDIS Spokespersons: J. P. Chen, E. Cisbani, H. Gao, X. Jiang, J-C. Peng, 7 PhD students 3 He Sivers SSA: negative for π +, 3 He Collins SSA small Non-zero at highest x for  + Blue band: model (fitting) uncertainties Red band: other systematic uncertainties X. Qian, et al. PRL (2011) 107: (2011)

Results on Neutron Collins asymmetries are not large, except at x=0.34 Sivers negative Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Asymmetry A LT Result 3 He A LT Positive for  - To leading twist: Preliminary

Asymmetry A LT Result 3 He A LT : Positive for  - To leading twist: Preliminary J. Huang et al., PRL

–Corrected for proton dilution, f p –Predicted proton asymmetry contribution < 1.5% (π + ), 0.6% (π - ) –Dominated by L=0 (S) and L=1 (P) interference Consist w/ model in signs, suggest larger asymmetry Neutron A LT Extraction Preliminary Trans-helictiy

JLab 12 GeV Era: Precision Study of TMDs From exploration to precision study with 12 GeV JLab Transversity: fundamental PDFs, tensor charge TMDs: 3-d momentum structure of the nucleon  Quark orbital angular momentum Multi-dimensional mapping of TMDs 4-d (x,z,P ┴,Q 2 ) Multi-facilities, global effort Precision  high statistics high luminosity and large acceptance

GEMs (study done with CDF magnet, 1.5T) 41

12 GeV: Mapping of Collins/Siver Asymmetries with SoLID Both  + and  - For one z bin ( ) Will obtain many z bins ( ) Tensor charge E He(n), Spokespersons: J. P. Chen, H. Gao, X. Jiang, J-C. Peng, X. Qian E (p), Spokespersons: K. Allda, J. P. Chen, H. Gao, X. Li, Z-E. Mezinai

Map Collins and Sivers asymmetries in 4-D (x, z, Q 2, P T )

Expected Improvement: Sivers Function Significant Improvement in the valence quark (high-x) region Illustrated in a model fit (from A. Prokudin) f 1T  =

E : Worm-gear functions (“A’ rating: ) Spokespersons: Chen/Huang/Qiang/Yan Dominated by real part of interference between L=0 (S) and L=1 (P) states No GPD correspondence Lattice QCD -> Dipole Shift in mom. space. Model Calculations -> h 1L  =? -g 1T. h 1L  = g 1T = Longi-transversity Trans-helicity Center of points:

Discussion Unprecedented precision 4-d mapping of SSA Collins and Sivers  +,  - and K +, K - New proposal polarized proton with SoLID Study factorization with x and z-dependences Study P T dependence Combining with the world data extract transversity and fragmentation functions for both u and d quarks determine tensor charge study TMDs for both valence and sea quarks study quark orbital angular momentum study Q 2 evolution Global efforts (experimentalists and theorists), global analysis much better understanding of multi-d nucleon structure and QCD Longer-term future: EIC to map sea and gluon SSAs

Summary Nucleon (spin) Structure provides valuable inf on QCD dynamics A decade of experiments from JLab: exciting results valence spin structure, duality spin sum rules and polarizabilities precision measurements of g 2 : high-twist first neutron transverse spin results: Collins/Sivers/A LT Bright future 12 GeV Upgrade will greatly enhance our capability Precision determination of the valence quark spin structure flavor separation Precision extraction of transversity/tensor charge/ TMDs