Combined Aerosol Trajectory Tool, CATT Illustrated Instruction Manual Supported by: MARAMA contract on behalf of Mid-Atlantic/Northeast Visibility Union.

Slides:



Advertisements
Similar presentations
AESuniversity Ad hoc Reporting. Ad hoc Reports What are ad hoc reports? Why would you use ad hoc reports? Creating an ad hoc report from a query Building.
Advertisements

Using the SmartPLS Software
MARAMA/NESCAUM/LADCO Project: MARAMA/NESCAUM/LADCO Project: Source Apportionment of Air Quality Monitoring Data: Paired Aerosol / Trajectory Database Analysis.
Proposal Outline: Extensions to the VIEWS System: Analysis Tools and Auxiliary Data R. Husar, CAPITA March, 2003 Presentation and Analysis Tools CATT for.
UNESCO ICTLIP Module 4. Lesson 3 Database Design, and Information Storage and Retrieval Lesson 3. Information storage and retrieval using WinISIS.
Guide to Oracle10G1 Introduction To Forms Builder Chapter 5.
Planning and Statistics ADVIZOR TRAINING PLANNING AND STATISTICS V.1 1 ADVIZOR Tips.
Integrating Access with the Web and with Other Programs.
1 of 6 This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. © 2007 Microsoft Corporation.
C ombined A erosol T rajectory T ool, CATT Transport Analyzer for RPO Analysts R. B. Husar and K. Höijärvi, Washington University, St. Louis R.L. Poirot,
1 Computing for Todays Lecture 22 Yumei Huo Fall 2006.
Proposal Outline: Extensions to the VIEWS: General CATT Analysis Tool R. Husar, CAPITA Revised, June 26, 2003 Proposed Sub-Projects CATT for VIEWS$20k.
1 of 5 This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. © 2007 Microsoft Corporation.
Introduction To Form Builder
XP New Perspectives on Microsoft Access 2002 Tutorial 71 Microsoft Access 2002 Tutorial 7 – Integrating Access With the Web and With Other Programs.
ARCHIBUS Log On Instructions. Log Into ARCHIBUS Web Central Log In Screen 1.Open your Internet browser. 2.Enter the URL to view the ARCHIBUS Login Page.
MyiLibrary® ‘Search & View’ Website Training June 8, 2010.
Copyright © Texas Education Agency, All rights reserved. 1 Web Technologies Website Development with Dreamweaver.
Programming with Microsoft Visual Basic 2012 Chapter 12: Web Applications.
Tutorial 1 Getting Started with Adobe Dreamweaver CS3
Combined Aerosol Trajectory Tool, CATT Illustrated Instruction Manual Supported by: MARAMA contract on behalf of Mid-Atlantic/Northeast Visibility Union.
Creating a Web Site to Gather Data and Conduct Research.
Creating your own form from scratch.. To create a custom form, you can modify an existing form or design and create a form from scratch. In either case,
Tutorial 121 Creating a New Web Forms Page You will find that creating Web Forms is similar to creating traditional Windows applications in Visual Basic.
AUTOMATION OF WEB-FORM CREATION - KINNERA ANGADI – MS FINAL DEFENSE GUIDANCE BY – DR. DANIEL ANDRESEN.
Reporting in Version 5 Application Reports AKA: In Context or Right Click AKA: In Context or Right Click Export to Excel from Listing pages Management.
An Internet of Things: People, Processes, and Products in the Spotfire Cloud Library Dr. Brand Niemann Director and Senior Data Scientist/Data Journalist.
Chapter 17 Creating a Database.
Combined Aerosol & Trajectory Tool (CATT) Development R. Husar, K. Hoijarvi, J. Colson, S. Falke Center for Air Pollution Impact and Trend Analysis (CAPITA)
C ombined A erosol T rajectory T ool, CATT Status Report on Tools Development and Use Project supported by the Inter-RPO Data Analysis Workgroup Project.
C ombined A erosol T rajectory T ool, CATT Status Report on Tools Development and Use Project supported by the Inter-RPO Data Analysis Workgroup Project.
Accessing and Using Fire-Related Data with the CAPITA DataFed.net* Services Framework Stefan Falke Rudolf Husar Kari Hoijarvi Washington University in.
Status Report on CATT and FASTNET R. Poirot, VT DEC & R. Husar, CAPITA, 9/29/04 CATT: Combined Aerosol Trajectory Tools FASTNET: Fast Aerosol Sensing Tools.
Combined Aerosol Trajectory Tool, CATT Illustrated Instruction Manual Supported by: MARAMA contract on behalf of Mid-Atlantic/Northeast Visibility Union.
LBR & WS LAB 1: INTRODUCTION TO GIS.
User Interface Components Lecture # 5 From: interface-elements.html.
MANEVU/MRPO Project: MANEVU/MRPO Project: Paired Aerosol / Trajectory Database Analysis Tool Development Combined Aerosol Trajectory Tool, CATT R. Husar,
McGraw-Hill/Irwin The Interactive Computing Series © 2002 The McGraw-Hill Companies, Inc. All rights reserved. Microsoft Excel 2002 Working with Data Lists.
T7-1 LEARNING OUTCOMES – ACCESS PROBLEM SOLVING 1.Describe the process of using the Simple Query Wizard using Access 2.Describe the process of using the.
Possible Extensions to the VIEWS System Tools CATT for VIEWS30k Gridder/Contourer15k Auxiliary Data ASOS-Current Visibility20k Historical Weather20k Infrastructure.
Copyright 2007, Paradigm Publishing Inc. ACCESS 2007 Chapter 6 BACKNEXTEND 6-1 LINKS TO OBJECTIVES Using the Report Button Using the Report Button Print.
C ombined A erosol T rajectory T ool CATT Indicates the origin of air masses for specific aerosol condition MANE-VU & MRPO Tools in support of Inter-RPO.
MARAMA/NESCAUM/LADCO Project: MARAMA/NESCAUM/LADCO Project: Source Apportionment of Air Quality Monitoring Data: Paired Aerosol / Trajectory Database Analysis.
Chapter 27 Getting “Web-ified” (Web Applications) Clearly Visual Basic: Programming with Visual Basic nd Edition.
XP New Perspectives on Microsoft Office Access 2003, Second Edition- Tutorial 8 1 Microsoft Office Access 2003 Tutorial 8 – Integrating Access with the.
C ombined A erosol T rajectory T ool, CATT Transport Analyzer for RPO Analysts R. B. Husar and K. Höijärvi, Washington University, St. Louis R.L. Poirot,
Easy WP Guide V2.6 for WordPress 3.8. easywpguide.com Adding Tags within your Post Adding Tags whilst editing your Post, will automatically assign those.
C ombined A erosol T rajectory T ool, CATT Transport Analyzer for RPO Analysts R. B. Husar and K. Höijärvi, Washington University, St. Louis R.L. Poirot,
C ombined A erosol T rajectory T ool CATT Indicates the origin of air masses for specific aerosol condition MANE-VU & MRPO Tools in support of Inter-RPO.
C ombine A erosol T rajectory T ool ( CATT ) - Links Single Site - Single Day Trajectory Concentr. Percentile Trajectories User-Defined Filter Trajectory.
Proposal to MANE_VU: Extensions to the VIEWS: CATT Analysis Tool Full Proposal Text Full Proposal Text R. Husar, PI, CAPITA Revised, October 8, 2003 The.
Combined Aerosol Trajectory Tool, CATT Illustrated Instruction Manual Supported by: MARAMA contract on behalf of Mid-Atlantic/Northeast Visibility Union.
C ombine A erosol T rajectory T ool ( CATT ) - Links Single Site - Single Day Trajectory Concentr. Percentile Trajectories User-Defined Filter Trajectory.
Integrating Components and Dynamic Text Boxes with the Animated Map– Lesson 101 Integrating Components and Dynamic Text Boxes with the Animated Map Lesson.
 2002 Prentice Hall. All rights reserved. 1 Introduction to the Visual Studio.NET IDE Outline Introduction Visual Studio.NET Integrated Development Environment.
Orders – View and Print Boeing Supply Chain Platform (BSCP) Detailed Training January 2015.
The Next Step Hudson Fare Files 102 – Import & upload Rev. 10/14.
XP Creating Web Pages with Microsoft Office
AdisInsight User Guide July 2015
Chapter 2 – Introduction to the Visual Studio .NET IDE
FTS 2 Failure Tracking System 2 User‘s Guide Process Flow
Access Tutorial 8 Sharing, Integrating, and Analyzing Data
Microsoft Office Access 2003
Microsoft Office Access 2003
Comparative Reporting & Analysis (CR&A)
Tutorial 7 – Integrating Access With the Web and With Other Programs
Guidelines for Microsoft® Office 2013
Unit J: Creating a Database
Tutorial 8 Sharing, Integrating, and Analyzing Data
Presentation transcript:

Combined Aerosol Trajectory Tool, CATT Illustrated Instruction Manual Supported by: MARAMA contract on behalf of Mid-Atlantic/Northeast Visibility Union (MANE-VU) for the Inter-RPO Workgroup for Data Analysis Supplemental funding from Environmental Protection Agency, OAQPS, Agreement # National Science Foundation, Grant # Performed by the Center for Air Pollution Impact and Trend Analysis (CAPITA, Washington University In collaboration with Cooperative Institute for Research in the Atmosphere, CIRA-VIEWS Program January 10, 2004

Acknowledgements The CATT Tool is the result of an effective CIRA-CAPITA collaboration to create a sequential value-adding chain. CIRA has opened the VIEWS and the ATAD databases for use by CAPITA. In fact the current CATT ensemble trajectory browser is accessing the VIEWS database for chemical data in real time! CAPITA added the trajectory browser code and the user interface. The result is a textbook illustration of the new distributed computing paradigm! It is hoped that the values that the CATT project added to the chain will be accessed and utilized by others and continue the value-adding process. The opportunities for mutual empowerment are truly endless The functionality of CATT was strongly influenced by the dynamic infusion of ideas from Rich Poirot. Beyond setting the initial goal of the CATT-Tool project, he also supplied continuous feedback on both the initial CATT design as well as on other features that we have added for our own reasons. Serpil Kayin of MARAMA made sure that we actually finished this un-finishable 'project'. The entire DataFed/CATT code was written by Kari Höijärvi of CAPITA

Table of Contents Introduction The CATT Browser Web Page Data Query (Q) Interface (Q) Parameter Filter Location Filter Time Filter Trajectory Rendering Interface (RT) Application of Filters for Data “Slicing” Single Site, Single Day Trajectories Multi-Site, Single Day Trajectories All Visible Sites, Single Day Trajectories Limiting Trajectories by Parameter Value Single Site, Time-Range Trajectories Percentile Filter Seasonal aggregations Gridding and Grid Operators Incremental Probability Metric, IP (‘Rich Poirot’ Metric) Potential Source Contribution Function, PSCF (‘Phil Hopke’ Metric) Grid-Average Concentration Metric, DM (‘Donna Kenski’ Metric) Weighed Probability Metric, WP (‘Mark Green’ Metric) TrajAgg: User-Defined Trajectory Viewer

CATT Summary Links Single Site & Day Traj Percentile Filter User-Defined Trajectory Viewer All Visible Sites, Single Day Traj Pot. Src. Contr,‘Hopke’ Single Site, Time-Range Traj Inc. Prob. IP-‘Poirot’Avg. Conc, DM ‘Kenski’Weighed Prob. WP-Green’ Gridded Transport Metrics Multi-Site, Single Day Traj

CATT Software Components and Data Flow The CATT software consists of two rather independent components: 1.Chemical filter component. This component is accomplished through queries to chemical data sets. The output of this step is a list of “qualified” dates for a specific receptor location. 2.Trajectory aggregator component. This component receives the list of dates for a specific location and performs the trajectory aggregation, residence time calculation and other spatial operations to yield a transport pattern for specific receptor location and chemical conditions.

The CATT Browser Web Page The CATT program is a standard web page accessible through a URL by any user. The CATT browser has two data views, the Map and Time views. Each view serves double purpose: to display data as maps or time series and to accept user input (clicking on Map/Time view) for navigation (browsing) To the left of each view are view-specific controls to change either the content or form of the view. The top group of controls, ViewControls relate to the entire view, the bottom group of buttons are the LayerControls and the changes depend on which active (current) layer is in the view. The general map view settings include setting the overall image size, geographic zoom rectangle (latitude-longitude), image margins and axis labels. The form, accessible through the magnifying glass – button, is considered self-explanatory. The ‘T button allows the entry of user-specified title on the map image.

View Controls and Settings

Status and Navigation Bar The File menu item is for the design of new applications. It should only be used by developers and not by routine browsers of CATT. Traj_Point which shows the value of the species at different loc and time. Trajj_Line depicts the ensamble trajectories as lines. Traj_Grid shows the gridded trajectories as shaded contours. The Layer menu, highlighted in a yellow box, is an important navigational control of CATT. It displays and allows the selection of the ‘current layer’. Most of the user interaction is confined to the current layer. In CATT, the three layers are:

Data Query (Q) Interface (Q) Chemical filter conditions determine the subset of the chemical data for which the backtrajectories are extracted, rendered, or gridded. The chemical filters fall into three major categories, filtering by parameter (e.g. SO4), location or by time. The chemical filter settings are accessible through the Query form, loaded by the query button, Q, on the right side of the map view of the Data Viewer.

Trajectory rendering options The trajectory rendering interface is accessed through the RT button, while the Traj_line layer is current. The interface form is also shown

Details of the Incremental Probability Metric The IP metric requires the computation of two residence time matrices: filtered and unfiltered reference matrix. The resulting IRTP matrix is simply the difference: IRTP = (Filtered Restime Matrix – Unfiltered Restime Matrix) Normalized Un-Filtered Restime matrix Normalized Filtered Restime matrix for LYBR, SO4f, 80 th percentile.

Incremental Probability map LYBR, SO4, (80%), The IRTP metric highlights the differences between the filtered and unfiltered trajectory counts by literally calculating the difference of the two normalized matrices. The resulting difference matrix, has both positive and negative values The positive, reddish areas have ‘higher than average’ probability of transport and the bluish areas ‘higher than average’ probability of transport for the selected filter conditions

Incremental Probability Metric, IP (‘Rich Poirot’ Metric) datafed.aspx?page=CATT/CATT_IPhttp://webapps.datafed.net/dvoy_services/ datafed.aspx?page=CATT/CATT_IP Settings: Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_reference_grid' param_filter = all_values use_weight = none Button ‘Q’:View: 'map'; Layers: 'Traj_Line', 'Traj_Grid'; ID='ws_data' param_filter = percentile (80-100) loc_filter = loc_code time_filter = datatime_range Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_grid' use_weight = none normalize = true Button ‘O’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_mgo' Expression = a - b

Potential Source Contribution Function, PSCF (‘Phil Hopke’ Metric) _services/datafed.aspx?page=CA TT/CATT_SChttp://webapps.datafed.net/dvoy _services/datafed.aspx?page=CA TT/CATT_SC Settings: Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_reference_grid' param_filter = all_values use_weight = none Button ‘Q’:View: 'map'; Layers: 'Traj_Line', 'Traj_Grid'; ID='ws_data' param_filter = percentile ( ) loc_filter = loc_code time_filter = datatime_range Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_grid' use_weight = none normalize = true Button ‘O’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_mgo' Expression = a / b

Grid-Average Concentration Metric, DM (‘Donna Kenski’ Metric) y_services/datafed.aspx?page= CATT/CATT_DMhttp://webapps.datafed.net/dvo y_services/datafed.aspx?page= CATT/CATT_DM Settings: Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_reference_grid' param_filter = all_values use_weight = none Button ‘Q’:View: 'map'; Layers: 'Traj_Line', 'Traj_Grid'; ID='ws_data' param_filter = all_data loc_filter = loc_code time_filter = datatime_range Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_grid' use_weight = linear normalize = true Button ‘O’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_mgo' Expression = a / b

Weighed Probability Metric, WP (‘Mark Green’ Metric) t/dvoy_services/datafed.as px?page=CATT/CATT_WPhttp://webapps.datafed.ne t/dvoy_services/datafed.as px?page=CATT/CATT_WP Settings: Button ‘Q’: View: 'map'; Layers: 'Traj_Line', 'Traj_Grid'; ID='ws_data' param_filter = all_values loc_filter = loc_code time_filter = datatime_ramge Button ‘G’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_grid' use_wight = linear normalize = true Button ‘O’: View: 'map'; Layer: 'Traj_Grid'; ID='ws_mgo' Expression = a

Button ‘G Reference Grid Settings

Button ‘G’ Reference Grid Settings ( Same as for Traj_line Query)

Button ‘G’ Filtered Grid Settings

Button ‘O’ Grid Operator

Button ‘R’ Grid Rendering

TrajAgg viewer Given a table of receptor locations, dates, and chemical concentration the TrajAgg tool draws the corresponding ensemble of backtrajectories or residence time contour plots. The TrajAgg page has a single map view with trajectory Traj_line and Traj_grid layers.

Submission form for the chemical filter table The user defined filter table can be submitted and edited using the form, accessible through the button E. Following the submission (saving) of the data table on the server, the TajAgg viewer automatically displays the data in trajectory or grid mode. The table consists of simple comma separated fields with the first line indicating the column names. The fields loc-code and datetime are mandatory. Such csv tables can be exported from Excel. The loc_code field has to contain location identifiers that are in the IMPROVE/STN list. The list can be viewed in the main viewer window through the drop-down box for locations. If the chemical data for this table are obtained at location other than the IMPROVE/STN site list, the user can hand-select a nearby IMPROVE/STN location for the backtrajectories

Grid settings for the weighed residence time calculations

Setting for grid rendering of weighed trajectory aggregations