Deutscher Wetterdienst 1FE 13 – 07.12.2015 An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core Michael Baldauf (DWD) Bill.

Slides:



Advertisements
Similar presentations
Formal Computational Skills
Advertisements

Reduction of Temporal Discretization Error in an Atmospheric General Circulation Model (AGCM) Daisuke Hotta Advisor: Prof. Eugenia Kalnay.
COSMO Workpackage No First Results on Verification of LMK Test Runs Basing on SYNOP Data Lenz, Claus-Jürgen; Damrath, Ulrich
Finite Difference Methods
(c) MSc Module MTMW14 : Numerical modelling of atmospheres and oceans Staggered schemes 3.1 Staggered time schemes.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
Krakow - September, 15th 2008COSMO WG 2 - Runge Kutta1 Further Developments of the Runge-Kutta Time Integration Scheme Investigation of Convergence (task.
ICONAM ICOsahedral Non-hydrostatic Atmospheric Model -
Improvement of the Semi-Lagrangian advection by ‘selective filling diffusion (SFD)' WG2-meeting COSMO-GM, Moscow, Michael Baldauf (FE13)
Numerical Integration of Partial Differential Equations (PDEs)
Lucio Torrisi WG2-COSMO GM, Bucharest 2006 Recents Improvements in LMZ Code Lucio TORRISI CNMCA – Pratica di Mare (Rome)
Total Recall Math, Part 2 Ordinary diff. equations First order ODE, one boundary/initial condition: Second order ODE.
Modeling Fluid Phenomena -Vinay Bondhugula (25 th & 27 th April 2006)
Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst,
P. Ackerer, IMFS, Barcelona About Discontinuous Galerkin Finite Elements P. Ackerer, A. Younès Institut de Mécanique des Fluides et des Solides,
Towards Developing a “Predictive” Hurricane Model or the “Fine-Tuning” of Model Parameters via a Recursive Least Squares Procedure Goal: Minimize numerical.
M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest,
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)
Aktionsprogramm 2003 AP 2003: LMK Properties of the dynamical core and the metric terms of the 3D turbulence in LMK COSMO- General Meeting.
Most physically significant large-scale atmospheric circulations have time scales on the order of Rossby waves but much larger than the time scales.
Titelfoto auf dem Titelmaster einfügen Numeric developments in COSMO SRNWP / EWGLAM-Meeting Dubrovnik, Michael Baldauf 1, Jochen Förstner.
Task: replacement of the diagnostic scheme for rain/snow in LM 3.5 by a prognostic scheme in operational use since 26 Apr (LM 3.9) Aim: improvement.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Comparison of convective boundary layer velocity spectra calculated from large eddy simulation and WRF model data Jeremy A. Gibbs and Evgeni Fedorovich.
Priority project CDC Overview Task 1 COSMO-GM, Sept. 2010, Moscow M. Baldauf (DWD)
A cell-integrated semi-Lagrangian dynamical scheme based on a step-function representation Eigil Kaas, Bennert Machenhauer and Peter Hjort Lauritzen Danish.
Integration of 3-body encounter. Figure taken from
Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Rome Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany.
M. Baldauf (DWD)1 SMC-meeting, Bologna, 05/06. Feb with verification extensions for SMC-teleconf., 16. April 2014 Michael Baldauf (FE13) Proposed.
Model Task 0B: Implementing different schemes ATM 562 Fall 2015 Fovell 1.
Deutscher Wetterdienst 1FE 13 – Linear solutions of flow over mountains COSMO General Meeting WG2 'Numerics and Dynamics' Michael.
Sensitivity experiments with the Runge Kutta time integration scheme Lucio TORRISI CNMCA – Pratica di Mare (Rome)
24-28 Sept. 2012Baldauf, Reinert, Zängl (DWD)1 Michael Baldauf, Daniel Reinert, Günther Zängl (DWD, Germany) PDEs on the sphere, Cambridge, Sept.
Manno, , © by Supercomputing Systems 1 1 COSMO - Dynamical Core Rewrite Approach, Rewrite and Status Tobias Gysi POMPA Workshop, Manno,
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Offenbach Semi-Implicit Time Integration (NH Schemes of the Next Generation) J. Steppeler, DWD.
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
10-13 Sept. 2012M. Baldauf (DWD)1 Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany Priority Project "Conservative Dynamical Core" Final report.
1 Priority Project CDC Task 2: The compressible approach COSMO-GM, , Moscow Pier Luigi Vitagliano (CIRA), Michael Baldauf (DWD)
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Requirements of High Accuracy Computing 1) Adopted numerical scheme must resolve all physical time and length scales. 2) Numerical scheme must be neutrally.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
Mass Coordinate WRF Dynamical Core - Eulerian geometric height coordinate (z) core (in framework, parallel, tested in idealized, NWP applications) - Eulerian.
Test of Supercell Propagation Theory Using Data from VORTEX 95 Huaqing Cai NCAR/ASP/ATD.
1 Reformulation of the LM fast- waves equation part including a radiative upper boundary condition Almut Gassmann and Hans-Joachim Herzog (Meteorological.
Game Technology Animation V Generate motion of objects using numerical simulation methods Physically Based Animation.
COSMO-DE, M. Baldauf Stability considerations of advection schemes and Improvements of Semi-Lagrange advection for the Runge-Kutta dynamical.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Component testing of the COSMO model’s turbulent diffusion.
Deutscher Wetterdienst Flux form semi-Lagrangian transport in ICON: construction and results of idealised test cases Daniel Reinert Deutscher Wetterdienst.
COSMO General Meeting 2008, Krakow Modifications to the COSMO-Model Cumulus Parameterisation Scheme (Tiedtke 1989): Implementation and Testing Dimitrii.
Status Report WG2 J. Steppeler, DWD Zurich Z-Coordinate Runge Kutta and Semi-Lagrangian methods Direct implicit solvers Courant number independent.
Deutscher Wetterdienst 1FE 13 – Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2008’ COSMO General Meeting, Krakau
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 32.
By Dale R. Durran and Leonard W. Snellman.  “The physical reason for quasi-geostrophic vertical motion is reviewed. Various techniques for estimating.
Time Integration Schemes Bill Skamarock NCAR/MMM 1.Canonical equations for scheme analyses. 2.Time-integration schemes used in NWP models.
Priority project CDC Task 1.4: Choice of the anelastic equation system and Milestone 3.2: Suitability of fundamental approximations PP CDC-Meeting, ,
Introducing the Lokal-Modell LME at the German Weather Service
Development of nonhydrostatic models at the JMA
QPF sensitivity to Runge-Kutta and Leapfrog core
Conservative Dynamical Core (CDC)
Improving computational stability with time-splitting of vertical advection considering 3-dimensional CFL condition Kohei Kawano1, Kohei Aranami1, Tabito.
21th Lecture - Advection - Diffusion
Bucharest 2006 J. Steppeler (DWD)
Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany
Bogdan Rosa1, Marcin Kurowski1, Damian Wójcik1,
COSMO implementations at CNMCA: tests with different dinamycal options
Bucharest 2006 J. Steppeler (DWD)
Conservative Dynamical Core (CDC)
Reporter : Prudence Chien
Presentation transcript:

Deutscher Wetterdienst 1FE 13 – An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core Michael Baldauf (DWD) Bill Skamarock (NCAR) COSMO General Meeting, , DWD, Offenbach

Deutscher Wetterdienst 2FE 13 – Motivation: in a convection-permitting model (like COSMO-DE) the vertical advection plays a much bigger role than in a convection-parameterising model  try to achieve higher accuracy in the vertical advection of dynamic variables ( u,v,w,T',p' ), too COSMO-model up to now: vertically implicit centered diff. 2nd order WRF: vertically explicit upwind scheme (3rd order) advantages: Fits best to the explicit horizontal advection and the Runge-Kutta-scheme Relatively easy to implement disadvantages: Limitation of Courant number: C x + C y + C z < 1.4 (Baldauf, 2008, JCP)  WRF uses smaller time steps (~15 sec for dx=3km) WRF uses a vertical ‘velocity brake’  Keep the vertically implicit scheme, but try a higher order of approximation (COSMO priority project 'Runge-Kutta', Task 8)

Deutscher Wetterdienst 3FE 13 – Several implicit advection schemes (2-timelevels) A z denotes a spatial discretisation of the vertical advection operator: Centered differences 2nd order (spatially and temporally) ('CN2') current Upwind 3rd order (spatially) ('CN3') new Upwind 3rd order (spatially and temporally) ('CN3Crow') new derivation analogous to the explicit Crowley-schemes (Tremback et al., 1987, MWR) To achieve higher order in time, too, we will use  =1/2 (‚pure' Crank-Nicholson)

Deutscher Wetterdienst 4FE 13 – Pure advection test: Only implicit scheme (i.e. u=0), w=2, dt =0.25  C z =0.5 CN3 CN2CN3CrowCN3 Test _ay

Deutscher Wetterdienst 5FE 13 – CN2CN3CrowCN3 Test _ay Pure advection test: Only implicit scheme (i.e. u=0), w=2, dt =1.5  C z =3

Deutscher Wetterdienst 6FE 13 – The current 3-stage RK-scheme in the COSMO-model Wicker, Skamarock (2002) MWR In the following: A x = upwind 5 th order

Deutscher Wetterdienst 7FE 13 – CN2, C z =2.4 Test _a CN2, C z =2.0CN2, C z =1.6 CN2, C z =1.0 CN2, C z =0.5 C x = 0.5 C z The current 3-stage RK-scheme in the COSMO-model

Deutscher Wetterdienst 8FE 13 – The current scheme shows a certain damping, which seems to be typically for implicit schemes inside of a Runge-Kutta-scheme The vertical advection is not unconditionally stable, despite the fact, that an implicit scheme is used (but up to now this was not a problem in all COSMO-DE or –EU runs) Remark:  =0 (i.e. without an overdamping ): Bigger dispersion error Instability sets in much earlier (at dt =0.8  C z =1.6)

Deutscher Wetterdienst 9FE 13 – New proposal: complete operator splitting advantages: no implicit scheme occurs inside of the RK if the numerical operators commute, then the stability properties of the single operators are passed on to the whole scheme (LeVeque and Oliger, 1983) ‚overdamping‘ is not needed (   =0 is possible) ‚expensive' vertical advection is called only once / timestep R x = complete RK3-scheme, but without A z

Deutscher Wetterdienst 10FE 13 – CN3Crow Test _a CN2CN3 Complete operator splitting, dt=0.25  C z =0.5

Deutscher Wetterdienst 11FE 13 – Complete operator splitting, dt=1.2  C z =2.4 CN3CrowCN2CN3

Deutscher Wetterdienst 12FE 13 – Linearised shallow water equations Divergence damping: Advective transport with velocity ( U 0, V 0 ) fast wave expansion with velocity Question: does the 'complete operator splitting' work together with fast (sound-, gravity-) waves? (splitting-error, stability,...) y y y y y y y y Treat y-adv. as ‘vertical’ advection

Deutscher Wetterdienst 13FE 13 – dt=1dt=0.6 dt=0.25 For reference: upwind5 in y-direction New scheme: CN3Crow in y-direction Height field

Deutscher Wetterdienst 14FE 13 – complete operator splitting, but with horizontal advection as 'rhs':  adv. test unstable! It seems generally not to be a good idea to use explicit parts as a rhs of an implicit scheme tendencies of the vertical advection analogous to the physical tendencies  adv. test unstable implicit scheme only in 3rd RK-sub step  adv. test unstable mixing: explicit in RK 1st+2nd sub step, implicit in 3rd RK-sub step  adv. test: strongly damping or unstable 'partial operator splitting':  adv.tests ok., but shallow water equations unstable Do better combinations exist between horizontal and vertical advection?

Deutscher Wetterdienst 15 Real case study: COSMO-DE (2.8 km resolution) for the ‚ ‘, 0 UTC run 1h-precipitation sum at 13 UTC Old VANew VA Diff. ‚New - Old VA‘ ‘New VA’ = ‘Complete operator splitting’ with ‘CN3Crow’

Deutscher Wetterdienst 16 Real case study: COSMO-DE (2.8 km resolution) for the ‚ ‘, 0 UTC run 1h-precipitation sum at 14 UTC Old VANew VA Diff. ‚New - Old VA‘

Deutscher Wetterdienst 17 Real case study: COSMO-DE (2.8 km resolution) for the ‚ ‘, 0 UTC run 1h-precipitation sum at 15 UTC Old VANew VA Diff. ‚New - Old VA‘

Deutscher Wetterdienst , 0 UTC 21 h precipitation sum Diff. ‚New – Old. VA‘

Deutscher Wetterdienst 19FE 13 – , 0 UTC, mean/max values max v h max w

Deutscher Wetterdienst 20FE 13 – Efficiency: CN2 / current scheme: solves a tridiagonal system: comp. effort ~ 3 N call in every RK-substep = 3 times / timestep CN3,... / complete operator splitting: solves a pentadiagonal system: comp. effort ~ 13 N call 1 times / timestep uses 'Numerical recipes' routines bandec, banbks, which where optimized for vector computers (NEC SX-8R)

Deutscher Wetterdienst 21FE 13 – Summary The current implicit vertical advection scheme possess a relatively strong damping and is formally not unconditionally stable. From all of the tested alternatives only the 'complete operator splitting' (= vertical advection outside of the RK-scheme) with CN3 or CN3Crow has proven to be superior: improved advection properties in idealized advection tests unconditionally stable in C z works also in combination with fast waves plausible results in idealized and real cases computational amount is only slightly increased runs stable for several COSMO-DE (2.8 km) simulations (summer period); But: L. Torrisi (CNMCA) found an unstable case with a 7 km resolution; One COSMO-DE run became unstable Outlook inspection of unstable cases; winter time cases Synoptic verification of a longer COSMO-DE period (August 2008)

Deutscher Wetterdienst 22FE 13 –

Deutscher Wetterdienst 23FE 13 – Demonstrate the ability of the implicit schemes: 2D-advection tests In the following: the 3-stage Runge-Kutta is used as time integration scheme the horizontal advection always is a 5th order upwind scheme Wicker, Skamarock, 2002, MWR Initial state: ‚2D-cone‘ or

Deutscher Wetterdienst 24FE 13 – CN2 CN3 CN3Crow up3 Test ‚solid body rotation' (1 turn around)

Deutscher Wetterdienst 25FE 13 – COSMO-model: behaviour with complete dynamical core (RK3) + simplified physics (only cond./evap.): Weisman, Klemp (1982)-test case CN2 /alt CN3 / kompl. Oper-splitt. q c, after 30 min.

Deutscher Wetterdienst 26FE 13 – gprof: CN2 / bisheriges Schema ngranularity: Each sample hit covers 4 bytes. Time: seconds called/total parents index %time self descendents called+self name index called/total children /3025.organize_dynamics [3] [4] __src_runge_kutta_NMOD_org_runge_kutta [4] /9075 fast_waves_runge_kutta [5] /3025.__src_advection_rk_NMOD_advection_pd [8] =====> /9075 complete_tendencies_uvwtpp [10] /9075.__src_advection_rk_NMOD_advection [12]

Deutscher Wetterdienst 27FE 13 – gprof: CN3Crow / komplettes Operatorsplitting ngranularity: Each sample hit covers 4 bytes. Time: seconds /3025.organize_dynamics [3] [4] __src_runge_kutta_NMOD_org_runge_kutta [4] /9075.__fast_waves_rk_NMOD_fast_waves_runge_kutta [5] =====> /3025 complete_tend_uvwtpp_cn3crow_nr [7] /3025.__src_advection_rk_NMOD_advection_pd [9] /9075.__src_advection_rk_NMOD_advection [13] /3025 implicit_vert_diffusion_uvwt [21] /3025.__hori_diffusion_NMOD_comp_hori_diff [23] /3025.__src_runge_kutta_NMOD_org_runge_kutta [4] [7] complete_tend_uvwtpp_cn3crow_nr [7] /15125.__numeric_utilities_NMOD_solve_5banddiag [11] /15125 complete_tend_uvwtpp_cn3crow_nr [7] [11] __numeric_utilities_NMOD_solve_5banddiag [11] / __numeric_utilities_NMOD_bandec [18] / __numeric_utilities_NMOD_banbks [22]

Deutscher Wetterdienst 28FE 13 – Realer Testfall (' , 0 UTC') neues Schema u.U. etwas weniger gestört mittlere Drucktendenz: max v h max w