カラー超伝導における 非アーベルボーテックスのフェルミオン 構造 安井繁宏 (KEK) in collaboration with 板倉数記 (KEK) and 新田宗土 ( 慶應大学 ) 08 Jun. 東京大学松井研究室 Phys. Rev. D81, (2010)
1.Introduction 2.Bogoliubov-de Gennes equation A.Single Flavor case B.CFL case 3.Effective Theory in 1+1 dimension 4.Summary Contents
Introduction Vortex Δ(r,θ)=|Δ(r)|e inθ ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 winding number n Topologically Stable θ=0 → θ=2π Ginzburg-Landau theory is effective for r >> ξ. ξ
Topologically Stable Vortex Δ(r,θ)=|Δ(r)|e inθ ξ ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings θ=0 → θ=2π symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 Ginzburg-Landau theory is effective for r >> ξ. winding number n Fermions
Topologically Stable ξ Vortex ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings θ=0 → θ=2π Ginzburg-Landau theory is effective for r >> ξ. symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 Fermions
Ginzburg-Landau theory is effective for r >> ξ. ξ Fermions
ξ
ξ
Fermions appear at short distance. ξ Fermions
Fermions appear at short distance. ξ Fermions Fermions in Topological Objects ・ Soliton (kink, Skyrmion) ・ Quantum Hall Effect ・ Bulk-Edge correspondence ・ Domain Wall Fermion
Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently Gap profiling function Δ(r) is obtained from fermion dynamics. n kzkz E particle hole
Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E vortex Δ(r,θ)=|Δ(r)|e iθ bound states
Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 vortex Δ(r,θ)=|Δ(r)|e iθ bound states
Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 vortex Δ(r,θ)=|Δ(r)|e iθ bound states bounsd state dominance
Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 bound states r
Introduction Density of states in vortex non-Abelian statistics D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001) B. Sacepe et al. Phys. Rev. Lett. 96, (2006) Density of states in vortex BEC-BCS crossover with vortex K. Mizushima, M. Ichioka and K. Machida, Phys. Rev. Lett.101, (2008) → BCSBEC ← zero mode gapless I. Guillamon et al. Phys. Rev. Lett. 101, (2008) outside of vortex iside of vortex Fermi surface
Introduction What‘s about COLOR SUPERCONDUCTIVITY? From confinement phase to deconfinement phase baryon and meson QGP = Quark Gluon Plasma quark and gluon (asymptotic free?) QCD lagrangian J. C. Collins and M. J. Perry, PRL34, 1353 (1975)
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Early Universe Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase Early Universe
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase Introduction
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking
Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking vortex structure inside the star ・ nuclear clust → glitch (star quake) ・ neutron matter → p- wave ・ CFL phase → non-Aelian vortex ?
Introduction What‘s about COLOR SUPERCONDUCTIVITY? CFL gap Δ iα = SU(3) c+F
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d CFL gap Δ iα = SU(3) c+F
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s CFL gap SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα = SU(3) c+F
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s u CFL gapSU(3) c+F SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα =
Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s u d CFL gap SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα = SU(3) c+F
Introduction repulsive force CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson ・ E. Nakano, M. Nitta, T. Matsuura, Phys. Lett. B672, 61 (2009), ibid Phys. Rev. D78, (2008) ・ M. Eto and M. Nitta, arXiv: [hep-ph], [hep-ph] What‘s about COLOR SUPERCONDUCTIVITY? attractive forcerepulsive force vortex-vortex vortex-antivortex vortex-vortex
Introduction repulsive force CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson ・ E. Nakano, M. Nitta, T. Matsuura, Phys. Lett. B672, 61 (2009), ibid Phys. Rev. D78, (2008) ・ M. Eto and M. Nitta, arXiv: [hep-ph], [hep-ph] What‘s about COLOR SUPERCONDUCTIVITY? attractive force vortex-vortex vortex-antivortex vortex-vortex → But Ginzburg-Landau theory is effective only at large length scale. repulsive force
ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. non-Abelian vortex
ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. What‘s fermion modes? non-Abelian vortex
ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. Bogoliubov-de Gennes (BdG) equation !! non-Abelian vortex What‘s fermion modes?
Single Flavor Single flavor fermion with Abelian vortex n kzkz E For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). Bogoliubov-de Gennes (BdG) equation
Single Flavor Single flavor fermion with Abelian vortex n kzkz E Solution with E=0 (n=0, k z =0) For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). Bogoliubov-de Gennes (BdG) equation
Single Flavor Single flavor fermion with Abelian vortex Right solution n kzkz E Solution with E=0 (n=0, k z =0) Fermion Zero mode (E=0) For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). vortex configuration |Δ(r)|e iθ as background field Bogoliubov-de Gennes (BdG) equation |Δ(r)| → 0 for r → 0 |Δ(r)| → |Δ| for r → ∞ ・ Localization with e -|Δ|r ・ Oscillation with J 0 (μr), J 1 (μr) Left solution is similar.
CFL Bogoliubov-de Gennes equation with non-Abelian vortex s non-Abelian vortex Bogoliubov-de Gennes equation n kzkz E
CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)
CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)
CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)
CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)
CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) triplet n kzkz E Right solution
CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) singlet n kzkz E Right solution
CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) singlet n kzkz E Right solution
CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) n kzkz E multiplet most stable mode radius triplet singlet doublet zero mode non-zero mode 1/|Δ| 2/|Δ| --- SU(2) c+F x U(1) c+F
CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) CFL SU(3) c+F Vortex SU(2) c+F xU(1) c+F non-Abelian vortex
triplet singlet CFL SU(3) c+F Vortex SU(2) c+F xU(1) c+F Fermion zero modes (E=0) non-Abelian vortex
Effective Theory in 1+1 dimension Fermion zero modes (E=0) What is effective theory of fermion zero modes in 1+1 dim. along z axis? z
Effective Theory in 1+1 dimension z Separate (r,θ) and (t,z). Integrate out (r, θ). Effective Theory in 1+1 dim. original equation of motion Single flavor case
Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV E kzkz light Right
Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV n kzkz E Right
Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV n kzkz E Right
Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Right:
Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left:
Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left: Right Left
Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left: Right Left E kzkz light Right Left
Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right
Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = E kzkz light triplet singlet Right
n kzkz E Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right
n kzkz E triplet singlet Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right
Summary Fermion structure in non-Abelian vortex in color superconductivity. Bogoliubov-de Gennes (BdG) equation with non-Abelian vortex. - Single flavor: single zero mode (Cf. Y.Nishida, Phys.Rev.D81,074004(2010)) - CFL: triplet and singlet zero modes in SU(2) c+F x U(1) c+F symmetry. Effective theory of fermion zero mode in 1+1 dimension. Application to neutron (quark, hybrid) stars and experiments of heavy ion collisions will be interesting.
Introduction non-Abelian Abrikosov lattice (?) Nitta-san‘s seminar in KEK 2009 CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson What‘s about COLOR SUPERCONDUCTIVITY? repulsive force (?)
Introduction non-Abelian Abrikosov lattice (?) Nitta-san‘s seminar in KEK 2009 CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson What‘s about COLOR SUPERCONDUCTIVITY? We need to study structure of non-Abelian vortex from micro- to macroscopic scale. repulsive force (?)
Introduction What‘s about COLOR SUPERCONDUCTIVITY? QCD lagrangian
Introduction What‘s about COLOR SUPERCONDUCTIVITY? QCD lagrangian CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking