カラー超伝導における 非アーベルボーテックスのフェルミオン 構造 安井繁宏 (KEK) in collaboration with 板倉数記 (KEK) and 新田宗土 ( 慶應大学 ) 08 Jun. 東京大学松井研究室 Phys. Rev. D81, 105003 (2010)

Slides:



Advertisements
Similar presentations
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
Advertisements

The Phase Diagram of Nuclear Matter Oumarou Njoya.
LOFF, the inhomogeneous “faces” of color superconductivity Marco Ruggieri Università degli Studi di Bari Conversano, 16 – 20 Giugno 2005.
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Topological Superconductors
Chiral symmetry breaking and structure of quark droplets
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
the equation of state of cold quark gluon plasmas
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
Chiral Magnetic Effect on the Lattice Komaba, June 13, 2012 Arata Yamamoto (RIKEN) AY, Phys. Rev. Lett. 107, (2011) AY, Phys. Rev. D 84,
Takayuki Nagashima Tokyo Institute of Technology In collaboration with M.Eto (Pisa U.), T.Fujimori (TIT), M.Nitta (Keio U.), K.Ohashi (Cambridge U.) and.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Quarkyonic Chiral Spirals
A.S. Kotanjyan, A.A. Saharian, V.M. Bardeghyan Department of Physics, Yerevan State University Yerevan, Armenia Casimir-Polder potential in the geometry.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
クォーク・グルーオン・プラズマにおける「力」の量子論的記述
Chiral symmetry breaking in dense QCD
「第5回 J-PARC における高エネルギーハドロン物理」 J-PARC に活きる南部先生のアイデア 1.Introdution 2.Stability of hadronic matter 3. Chiral symmetry in vacuum & in medium 4. No summary.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
格子QCDシミュレーションによる QGP媒質中のクォーク間ポテンシャルの研究
Quark-gluon-plasma. One of the reasons to study ultrarelativistic heavy ion collisions is the hope to observe an entirely new form of matter created by.
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
The Hierarchy Problem and New Dimensions at a Millimeter Ye Li Graduate Student UW - Madison.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011)
Axel Drees, Stony Brook University, Lectures at Trento June 16-20, 2008 Electromagnetic Radiation form High Energy Heavy Ion Collisions I.Lecture:Study.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Quark matter meets cold atoms 474th International Wilhelm und Else Heraeus Seminar on Strong interactions: from methods to structures, Bad Honnef, Feb.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Thermal phase transitions in realistic dense quark matter
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Color Superconductivity: Recent developments Qun Wang Department of Modern Physics China University of Science and Technology Quark Matter 2006, Shanghai.
Fluctuation effect in relativistic BCS-BEC Crossover Jian Deng, Department of Modern Physics, USTC 2008, 7, QCD workshop, Hefei  Introduction  Boson-fermion.
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
Study of chemical potential effects on hadron mass by lattice QCD Pushkina Irina* Hadron Physics & Lattice QCD, Japan 2004 Three main points What do we.
Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.
Chiral symmetry breaking and Chiral Magnetic Effect in QCD with very strong magnetic field P.V.Buividovich (ITEP, Moscow, Russia and JIPNR “Sosny” Minsk,
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
The axial anomaly and the phases of dense QCD
QCD 相転移の臨界点近傍における 非平衡ダイナミクスについて 北沢正清(京大), 国広悌二(京大基研 ), 根本幸雄 (RIKEN-BNL) 0 T  の1コメ ント Chiral symmetry breaking Color superconductivity (CSC) critical endpoint.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Bogoliubov-de Gennes Study of Trapped Fermi Gases Han Pu Rice University (INT, Seattle, 4/14/2011) Leslie Baksmaty Hong Lu Lei Jiang Randy Hulet Carlos.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
ICPAQGP 2010 Goa, Dec. 6-10, Percolation & Deconfinement Brijesh K Srivastava Department of Physics Purdue University USA.
into a quark-antiquark pair self-coupling of gluons
Raju Venugopalan Brookhaven National Laboratory
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
Cyrille Marquet Columbia University
The Study of the Possible Phase Diagram of Deconfinement in FL Model
mesons as probes to explore the chiral symmetry in nuclear matter
Magnetic Monopoles and the Homotopy Groups
dark matter Properties stable non-relativistic non-baryonic
Physics Opportunities with heavy quark system at FAIR
Color Superconductivity: CFL and 2SC phases
Color Superconductivity in dense quark matter
Chengfu Mu, Peking University
QCD and Heavy-ion Collisions
Hyun Kyu Lee Hanyang University
QCD at very high density
American Physical Society
Chandrasekhar Chatterjee, Shigehiro Yasui(安井 繁宏)
Presentation transcript:

カラー超伝導における 非アーベルボーテックスのフェルミオン 構造 安井繁宏 (KEK) in collaboration with 板倉数記 (KEK) and 新田宗土 ( 慶應大学 ) 08 Jun. 東京大学松井研究室 Phys. Rev. D81, (2010)

1.Introduction 2.Bogoliubov-de Gennes equation A.Single Flavor case B.CFL case 3.Effective Theory in 1+1 dimension 4.Summary Contents

Introduction Vortex Δ(r,θ)=|Δ(r)|e inθ ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 winding number n Topologically Stable θ=0 → θ=2π Ginzburg-Landau theory is effective for r >> ξ. ξ

Topologically Stable Vortex Δ(r,θ)=|Δ(r)|e inθ ξ ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings θ=0 → θ=2π symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 Ginzburg-Landau theory is effective for r >> ξ. winding number n Fermions

Topologically Stable ξ Vortex ・ Abrikosov lattice ・ 4 He ( 3 He) superfluidity ・ BEC-BCS ・ quantum turbulance ・ nuclear superfluidity ・ color superconductivity ・ cosmic strings θ=0 → θ=2π Ginzburg-Landau theory is effective for r >> ξ. symmetry breaking G→H π 1 (G/H) ≅ π 0 (H)≠0 Fermions

Ginzburg-Landau theory is effective for r >> ξ. ξ Fermions

ξ

ξ

Fermions appear at short distance. ξ Fermions

Fermions appear at short distance. ξ Fermions Fermions in Topological Objects ・ Soliton (kink, Skyrmion) ・ Quantum Hall Effect ・ Bulk-Edge correspondence ・ Domain Wall Fermion

Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently Gap profiling function Δ(r) is obtained from fermion dynamics. n kzkz E particle hole

Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E vortex Δ(r,θ)=|Δ(r)|e iθ bound states

Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 vortex Δ(r,θ)=|Δ(r)|e iθ bound states

Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 vortex Δ(r,θ)=|Δ(r)|e iθ bound states bounsd state dominance

Gap profiling function Δ(r) is obtained from fermion dynamics. Introduction Bogoliubov-de Gennes (BdG) equation de Gennes, ``Superconductivity of Metals and Alloys“, (Benjamin New York, 1966) F. Gygi and M. Shluter, Phy. Rev. B43, 7069 (1991) P. Pieri and G. C. Strinati, Phy. Rev. Lett. 91, (2003) Gap profiling function Hamiltonian of fermions Solve self-consistently n kzkz E zero mode E=0 bound states r

Introduction Density of states in vortex non-Abelian statistics D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001) B. Sacepe et al. Phys. Rev. Lett. 96, (2006) Density of states in vortex BEC-BCS crossover with vortex K. Mizushima, M. Ichioka and K. Machida, Phys. Rev. Lett.101, (2008) → BCSBEC ← zero mode gapless I. Guillamon et al. Phys. Rev. Lett. 101, (2008) outside of vortex iside of vortex Fermi surface

Introduction What‘s about COLOR SUPERCONDUCTIVITY? From confinement phase to deconfinement phase baryon and meson QGP = Quark Gluon Plasma quark and gluon (asymptotic free?) QCD lagrangian J. C. Collins and M. J. Perry, PRL34, 1353 (1975)

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Early Universe Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase Early Universe

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase Introduction

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking

Early Universe Introduction What‘s about COLOR SUPERCONDUCTIVITY? Compact StarsHeavy Ion Collisions RX J1856, U SAXJ RHIC, LHC, GSI QCD lagrangian From confinement phase to deconfinement phase CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking vortex structure inside the star ・ nuclear clust → glitch (star quake) ・ neutron matter → p- wave ・ CFL phase → non-Aelian vortex ?

Introduction What‘s about COLOR SUPERCONDUCTIVITY? CFL gap Δ iα = SU(3) c+F

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d CFL gap Δ iα = SU(3) c+F

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s CFL gap SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα = SU(3) c+F

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s u CFL gapSU(3) c+F SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα =

Introduction What‘s about COLOR SUPERCONDUCTIVITY? Abelian vortex ? ・ M. M. Forbes and A. R. Zhitntsky, Phy. Rev. D65, (2002) ・ K. Ida and G. Baym, Phys. Rev. D66, (2002) ・ K. Iida, Phys. Rev. D71, (2005) s u d s u d CFL gap SU(3) c+F → SU(2) c+F x U(1) c+F ・ A. P. Balachandran, S. Digal, T. Matsuura, Phys. Rev. D73, (2006) non-Abelian vortex !! Δ iα = SU(3) c+F

Introduction repulsive force CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson ・ E. Nakano, M. Nitta, T. Matsuura, Phys. Lett. B672, 61 (2009), ibid Phys. Rev. D78, (2008) ・ M. Eto and M. Nitta, arXiv: [hep-ph], [hep-ph] What‘s about COLOR SUPERCONDUCTIVITY? attractive forcerepulsive force vortex-vortex vortex-antivortex vortex-vortex

Introduction repulsive force CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson ・ E. Nakano, M. Nitta, T. Matsuura, Phys. Lett. B672, 61 (2009), ibid Phys. Rev. D78, (2008) ・ M. Eto and M. Nitta, arXiv: [hep-ph], [hep-ph] What‘s about COLOR SUPERCONDUCTIVITY? attractive force vortex-vortex vortex-antivortex vortex-vortex → But Ginzburg-Landau theory is effective only at large length scale. repulsive force

ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. non-Abelian vortex

ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. What‘s fermion modes? non-Abelian vortex

ξ Introduction What‘s about COLOR SUPERCONDUCTIVITY? We will study the vortex for any length scale. Bogoliubov-de Gennes (BdG) equation !! non-Abelian vortex What‘s fermion modes?

Single Flavor Single flavor fermion with Abelian vortex n kzkz E For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). Bogoliubov-de Gennes (BdG) equation

Single Flavor Single flavor fermion with Abelian vortex n kzkz E Solution with E=0 (n=0, k z =0) For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). Bogoliubov-de Gennes (BdG) equation

Single Flavor Single flavor fermion with Abelian vortex Right solution n kzkz E Solution with E=0 (n=0, k z =0) Fermion Zero mode (E=0) For vacuum (μ=0), see R. Jackiw and P. Rossi, Nucl. Phys. B190, 681 (1981). vortex configuration |Δ(r)|e iθ as background field Bogoliubov-de Gennes (BdG) equation |Δ(r)| → 0 for r → 0 |Δ(r)| → |Δ| for r → ∞ ・ Localization with e -|Δ|r ・ Oscillation with J 0 (μr), J 1 (μr) Left solution is similar.

CFL Bogoliubov-de Gennes equation with non-Abelian vortex s non-Abelian vortex Bogoliubov-de Gennes equation n kzkz E

CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)

CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)

CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)

CFL Bogoliubov-de Gennes equation with non-Abelian vortex n kzkz E triplet singlet SU(3) c+F → SU(2) c+F x U(1) c+F From CFL basis to SU(3) basis doublet (no zero mode)

CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) triplet n kzkz E Right solution

CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) singlet n kzkz E Right solution

CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) singlet n kzkz E Right solution

CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) n kzkz E multiplet most stable mode radius triplet singlet doublet zero mode non-zero mode 1/|Δ| 2/|Δ| --- SU(2) c+F x U(1) c+F

CFL Bogoliubov-de Gennes equation with non-Abelian vortex Fermion zero modes (E=0) CFL SU(3) c+F Vortex SU(2) c+F xU(1) c+F non-Abelian vortex

triplet singlet CFL SU(3) c+F Vortex SU(2) c+F xU(1) c+F Fermion zero modes (E=0) non-Abelian vortex

Effective Theory in 1+1 dimension Fermion zero modes (E=0) What is effective theory of fermion zero modes in 1+1 dim. along z axis? z

Effective Theory in 1+1 dimension z Separate (r,θ) and (t,z). Integrate out (r, θ). Effective Theory in 1+1 dim. original equation of motion Single flavor case

Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV E kzkz light Right

Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV n kzkz E Right

Effective Theory in 1+1 dimension z If |Δ(r)| is a constant |Δ|,... Plane wave solution Dispersion relation Effective Theory in 1+1 dim. Single flavor case v ≅ for μ=1000 MeV, |Δ|=100 MeV n kzkz E Right

Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Right:

Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left:

Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left: Right Left

Effective Theory in 1+1 dimension z equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) Single flavor case Left: Right Left E kzkz light Right Left

Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right

Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = E kzkz light triplet singlet Right

n kzkz E Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right

n kzkz E triplet singlet Effective Theory in 1+1 dimension equation of motion Spinor form of fermion zero mode Dirac operator in 1+1 dim. solution corresponding to a(t,z) CFL case z triplet singlet t : triplet s : singlet i = Right

Summary Fermion structure in non-Abelian vortex in color superconductivity. Bogoliubov-de Gennes (BdG) equation with non-Abelian vortex. - Single flavor: single zero mode (Cf. Y.Nishida, Phys.Rev.D81,074004(2010)) - CFL: triplet and singlet zero modes in SU(2) c+F x U(1) c+F symmetry. Effective theory of fermion zero mode in 1+1 dimension. Application to neutron (quark, hybrid) stars and experiments of heavy ion collisions will be interesting.

Introduction non-Abelian Abrikosov lattice (?) Nitta-san‘s seminar in KEK 2009 CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson What‘s about COLOR SUPERCONDUCTIVITY? repulsive force (?)

Introduction non-Abelian Abrikosov lattice (?) Nitta-san‘s seminar in KEK 2009 CP 2 = SU(3) c+F / SU(2) c+F x U(1) c+F NG boson What‘s about COLOR SUPERCONDUCTIVITY? We need to study structure of non-Abelian vortex from micro- to macroscopic scale. repulsive force (?)

Introduction What‘s about COLOR SUPERCONDUCTIVITY? QCD lagrangian

Introduction What‘s about COLOR SUPERCONDUCTIVITY? QCD lagrangian CFL (Color-Flavor Locking) phase SU(3) c x SU(3) L x SU(3) R → SU(3) c+L+R ・ pairing gap ・ symmetry breaking