The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.

Slides:



Advertisements
Similar presentations
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Advertisements

Generation of short pulses
Funded by: DoE. Anh T. Le and Timothy C. Steimle Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ * Varun Gupta, Corey.
DeMille Group Dave DeMille, E. Altuntas, J. Ammon, S.B. Cahn, R. Paolino* Physics Department, Yale University *Physics Department, US Coast Guard Academy.
Application of 2D fluorescence spectroscopy to Metal Containing Species Damian L. Kokkin and Timothy Steimle. Department of Chemistry and Biochemistry.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
A new measurement of the electron’s electric dipole moment using YbF molecules Mike Tarbutt Centre for Cold Matter, Imperial College London. International.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Relativistic effects in ADF Erik van Lenthe, SCM.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
63rd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2008 The Permanent Electric Dipole Moment of Cerium and Praesodymium Monoxides,
Magnetic g e -factors and electric dipole moments of Lanthanide monoxides: PrO * Hailing Wang, and Timothy C. Steimle Department of Chemistry and Biochemistry.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
The Cyclic CO 2 Trimer: Observation of two parallel bands and determination of intermolecular out-of-plane torsional frequencies Steacie Institute for.
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Fourier Transform Emission Spectroscopy of the G 3  -X 3 , C 3  -X 3  and G 3  -C 3  systems of CoCl R. S. Ram Department of Chemistry, University.
The 69 th International Symposium on Molecular Spectroscopy, June 2014 U. Illinois Champagne-Urbanna, Timothy C. Steimle, Hailing Wang a and Ruohan Zhang.
Spectroscopy of the Low- Energy States of BaO + Joshua H. Bartlett, Robert A. VanGundy, Michael C. Heaven 70 th International Symposium on Molecular Spectroscopy.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
*Funded by: DoE-BES Xiujuan Zhuang, Timothy C. Steimle & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA* The Visible Spectrum of.
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
62nd International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2007 The Permanent Electric Dipole Moment and Magnetic g-factors of Neodymium.
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Spectroscopic Research of Pt + NH3
Optical Zeeman Spectroscopy of Calcium Fluoride, CaF
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
Laser spectroscopy and ab initio calculations on TaF
High-resolution Laser Spectroscopy
Threshold Ionization and Spin-Orbit Coupling of CeO
Presentation transcript:

The 67 th International Symposium on Molecular Spectroscopy, June 2012 Ruohan Zhang, Chengbing Qin a and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Funded by: DoE-BES The Optical Stark Spectrum of the [17.8]0 + -X 1  + Band of AuF Thomas Varberg Mccalaster College, St Paul, MN, USA a Visitor from Dept. Chem. Phys. University of Science and Technology of China, Hefei, Anhui , China & Zeeman

“ Noble” metals actually have a rich and an valuable chemistry Noble metals Review by Pyykkö High speed of electrons near the nucleus  mass increase  stabilization and contraction The contraction of the 6s orbital  unique chemical properties of Au. Spectroscopic methods for probing electronic wavefunction: a) Stark effect b) Zeeman effect c) Hyperfine interactions 197 Au(I=3/2)

Previous Experimental Studies: Evans & Gerry JACS FTMW  B v, eQq(Au), C I (Au) & C I (F) Knurr, Butler & Varberg JPC-A 2009 [17.7]1-X 1  +  [17.7] mag. Hyp. Okabayashi et al CPL mm-wave  B v, eQq(Au), C I (Au) & C I (F) Theoretical Studies (Very Numerous); Recent Ones : Andreev & BelBruno CPL Visible Emission   =0&1  X 1  + Butler….& Varberg JPC-A 2010 cw-dye laser [17.7]1,[14.0]1 & [17.8]0-X 1  + sub-Doppler LIF; sputtering source Hill & Peterson JCTC 2012 Coupled Cluster prediction  e, r e, ect. Goll et al Phys. Rev. A 2007 DFT/Wavefunc hybrid  el Ref #1 Schwerdtfeger et al JCP 2011 Pseudopoteintials  el Ref #2 Fernández & Balbás PCCP 2011 vdW-DF  e, r e, ect.  el Ref #3

Well collimated molecular beam Rot.Temp.<10 K Single freq. tunable laser radiation PMT Gated photon counter Experimental set up for LIF studies Helmholtz coils Optical Zeeman Spectroscopy Stark plates Optical Stark spectroscopy Metal target Pulse valve skimmer Ablation laser SF 6 & Carrier Au tube

Observations-Field-Free LIF Varberg’s JCP 2010 Pulsed dye laser; sputtering source; T  600K FWHM  3 GHz P(1) R(0) Sub-Doppler I 2 Beam LIF AuF Current study cw dye laser; sputtering source; T  10K FWHM  40 MHz

P(1) - Stark Effect 0 V/cm 3010V/cm 0 V/cm X1X1 J=1 M J =0 MJ=1MJ=1 [17.8]0  J=0 MJ=0MJ=0 Electric Field Energy C C B B Field Free A A A A Laser Wavenumber LIF Signal

Analysis of FF & Stark Spectrum of [17.8]0+-X 1  +  (case(a))  S  J  > Basis function: H Rot =BJ 2 H Stark =E∙  el Field-Free Spectrum JCP 2010  T = cm -1 ; B”= cm -1 ; B’= cm -1 Stark Spectrum  8  8 representation ( J=0-7)  (X 1  + ) = (23) D  ([17.8]  + ) = (60) D

Discussion-Stark Dipole moment  (X 1  + ) = (23) D 9D Note: Au +1 F -1 Goll et al 2007 ;DFT/wavefunc hybrid Note: No predictions for [17.8]0 + state DFT 3.60 CSSD(T) 4.46 CSSD(T)/DFT 4.42 Method Value (D) CAM-DFT 4.24 “CAM” =Coulomb Attenuated The “CAM-DFT” method does indeed give the best results for m predictions, as proposed in Ref. 1.

Discussion-Stark Elec. Dipole moment  (X 1  + ) = (23) D Ref. 2 Schwerdtfeger et al JCP 2011 Pseudopoteintials “SC-SRPP-S” =Small Core; Scalar Relativistic; Pseudo- Potential -Stuttgart “SC-NRPP-S” =Small Core; Non-Relativistic; Pseudo- Potential -Stuttgart Relativity matters: vs compared to experimental value of D

Discussion-Stark Dipole moment  (X 1  + ) = (23) D Functional Value (D) DRSLL 4.06 LMKLL 3.94 KBM 3.94 Non-local correlation van der Waals PBE 3.96 Generalized Gradient Approximation Ref. 3 ;Fernández & Balbás PCCP 2011 vdW-DF  e, r e, ect. General Comment: All high-level predictions of  (X 1  + ) are good. Why? 1) Simple description of X 1  + : Au + (5d 10 )F - (3p 6 ) single Slater determinant 2)  not  strongly  dependent on relativistic effects (only valence electrons)

Zeeman effect Motivation: Insight into [17.8]0 + state. If [17.8]0 + = 1  +  non-magnetic If [17.8]0 + = 3    Hund’s case (a) limit)  non-magnetic  =0 & Eq. 1  non-magnetic Eq. 1 Observations: 4500 G. “Perp.” Field-free P(1) Field-free R(0) 4500 G. “Perp.” non-magnetic magnetic

Analysis Zeeman Spectrum of [17.8]0+-X 1  + All observed shifts due to the [17.8]0 + state. Phenomenological model for shifts [17.8]0 + state:  E zee =  B  g J  B Z  M J Results: Non-zero g J due to rotational mixing with [17.7]1 state ? Detailed interpretation in progress. [17.8]0 + J gJgJ  E ( MHz )

Thank you! Future plans: additional Au molecules (AuC, Au 2 …) Permanent electric dipole moments of [17.8]0 + & X 1  + have been determined  Test methodologies for relativistic electronic structure predictions Magnetic g-factors for [17.8]0 + & X 1  + have been determined  [17.8]0 + mixing Summary