Large-Scale Structure & Surveys Max Tegmark, MIT.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Institute for Computational Cosmology Durham University Shaun Cole for Carlos S. Frenk Institute for Computational Cosmology, Durham Cosmological simulations.
How did the universe begin?. The most popular theory is the Big Bang Matter, energy, space and time all started 13.7 billion years ago Nobody knows what.
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
The Evidence for the Big Bang Student Resource Sheet 5 Science and Religion in Schools: Unit 4a.
Cosmology Equipped with his five senses, man explores the universe around him, and calls the adventure "science". -- Edwin Powell Hubble.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
What is Dark Energy? Josh Frieman Fermilab and the University of Chicago.
Concluding Comments For the Course Cosmology Fascinating Past Highly accomplished present (for example, the material covered in this course). Really exciting.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
Once and Future Redshift Surveys UK National Astronomy Meeting 8 April 2005 Matthew Colless Anglo-Australian Observatory.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
The Statistical Properties of Large Scale Structure Alexander Szalay Department of Physics and Astronomy The Johns Hopkins University.
Dark Energy and Cosmic Sound Daniel Eisenstein (University of Arizona) Michael Blanton, David Hogg, Bob Nichol, Nikhil Padmanabhan, Will Percival, David.
The Big Bang Astrophysics Lesson 18. Learning Objectives To know:-  What is the big bang theory  What is the evidence supporting it including:-  Cosmological.
Announcements Observing next week will count for the fourth exam. The final exam will be cumulative. The final will be 40 questions, will be on cosmology,
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
The Revolution for the Rest of Us George Musser 6 October 2006.
COSMOLOGY SL - summary. STRUCTURES Structure  Solar system  Galaxy  Local group  Cluster  Super-cluster Cosmological principle  Homogeneity – no.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
The Birth of the Universe. Hubble Expansion and the Big Bang The fact that more distant galaxies are moving away from us more rapidly indicates that the.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
David Weinberg, Ohio State University Dept. of Astronomy and CCAPP The Cosmological Content of Galaxy Redshift Surveys or Why are FoMs all over the map?
The Big Bang: what happened, and when did it happen?
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
G. Miknaitis SC2006, Tampa, FL Observational Cosmology at Fermilab: Sloan Digital Sky Survey Dark Energy Survey SNAP Gajus Miknaitis EAG, Fermilab.
Large-scale Structure: Theory & Observations Josh Frieman Structure Formation & Evolution, Santiago, October 2002.
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Vatican 2003 Lecture 20 HWR Observing the Clustering of Matter and Galaxies History: : galaxies in and around the local group are not distributed.
J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Stars, starlight AND The Big Bang. OUTCOME QUESTION(S): S1-4-07: What is the evidence for the Big Bang Theory? Vocabulary & People Electromagnetic spectrumDoppler.
Homework for today was WORKBOOK EXERCISE: “Expansion of the Universe” (pg in workbook)
New Approaches to Modeling Nonlinear Structure Formation Nuala McCullagh Johns Hopkins University Cosmology on the Beach Cabo San Lucas, Mexico January.
The Doppler Effect  eCZ_AaY eCZ_AaY.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
MEASUREING BIAS FROM UNBIASED OBSERVABLE SEOKCHEON LEE (KIAS) The 50 th Workshop on Gravitation and Numerical INJE Univ.
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
Astronomy: Big Bang EQ: How did the universe begin? ** Copy all pink and yellow words. p. 89.
The Big Bang Theory.
Harrison B. Prosper Florida State University YSP
The Science of Creation
The Big Bang Theory.
The Expanding Universe
The Science of Creation
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The History of the Universe in 60 Minutes
Springel, Frenk & White 2006, Nature, 440, 11
Ben Wandelt Flatiron Institute
The Science of Creation
Lecture 20-21: The Formation of Structure---Galaxies, Clusters, Voids
Images: M. Blanton. Images: M. Blanton Figures: M. Blanton & SDSS.
Formation of the Universe
Our Universe Exploring our universe
Presentation transcript:

Large-Scale Structure & Surveys Max Tegmark, MIT

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Onion Tegmark 2002, Science, 296, Summary of last lecture

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Summary of last lecture 400

SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, Assumes k=0 Vanilla rules OK! 0th order: what we’ve learned about our expansion history Summary of last lecture

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB 1st order: what we’ve learned about cosmic clustering Summary of last lecture

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, st order: what we’ve learned about cosmic clustering Summary of last lecture

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, DO ANY OF THESE QUESTIONS CONFUSE YOU? 1. What is the Universe expanding into? 2. How can stuff be more than 14 billion light years away when the Universe is only 14 billion light years old? 3. Where in space did the Big Bang explosion happen? 4. Did the Big Bang happen at a single point? 5. How could a the Big Bang create an infinite space in a finite time? 6. How could space not be infinite? 7. If the Universe is only 10 billion years old, how can we see objects that are now 30 billion light years away? 8. Don’t galaxies receeding faster than c violate relativity theory? 9. Are galaxies really moving away from us, or is space just expanding? 10. Is the Milky Way expanding? 11. Do we have evidence for a Big Bang singularity? 12. What came before the Big Bang? 13.Should I feel insignificant?

The cosmic plan: Survey of cosmology basics Measuring large-scale structure with galaxy surveys Measuring large-scale structure neutral hydrogen L1: L3: L2:

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Springel, Frenk & White 2006, Nature, 440, 11

Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS de Lapparent, Geller & Huchra 1986

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Cmbgg OmOl LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 PSCz gals: (Data points uncorrelated) (Hamilton, Tegmark & Padmanabhan 2000)

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS 2006: 2dFGRS gals SDSS DR gals, now ~10 6 gals

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 APO SDSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS Zoom SDSS

Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 (Table from Natalie Roe) SOME SURVEYS TO LOOK FORWARD TO:

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LAMOST: The Large Sky Area Multi-Object Fibre Spectroscopic Telescope

Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Why are LRGs so useful?

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/ Our observable universe

LSS Our observable universe

LSS Our observable universe

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Quasars

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS LRG’s

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Common galaxies

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”: LRG’s have more statistical power than 2 million regular gals

Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities Measuring large-scale structure with galaxy surveys: what are the challenges?  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl

Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 MT, Hamilton, Strauss, Vogeley & Szalay 1998 SDSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Bias

Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Virgo LCDM simulation CMB

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS galaxies CMB

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Lum funcs & sel funcs by Michael Blanton (NYU)

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS

Molly Swanson, MT, Mike Blanton, Idit Zehavi: arXiv:

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS

Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities  P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1