Large-Scale Structure & Surveys Max Tegmark, MIT
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Onion Tegmark 2002, Science, 296, Summary of last lecture
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Summary of last lecture 400
SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, Assumes k=0 Vanilla rules OK! 0th order: what we’ve learned about our expansion history Summary of last lecture
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB 1st order: what we’ve learned about cosmic clustering Summary of last lecture
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, st order: what we’ve learned about cosmic clustering Summary of last lecture
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, DO ANY OF THESE QUESTIONS CONFUSE YOU? 1. What is the Universe expanding into? 2. How can stuff be more than 14 billion light years away when the Universe is only 14 billion light years old? 3. Where in space did the Big Bang explosion happen? 4. Did the Big Bang happen at a single point? 5. How could a the Big Bang create an infinite space in a finite time? 6. How could space not be infinite? 7. If the Universe is only 10 billion years old, how can we see objects that are now 30 billion light years away? 8. Don’t galaxies receeding faster than c violate relativity theory? 9. Are galaxies really moving away from us, or is space just expanding? 10. Is the Milky Way expanding? 11. Do we have evidence for a Big Bang singularity? 12. What came before the Big Bang? 13.Should I feel insignificant?
The cosmic plan: Survey of cosmology basics Measuring large-scale structure with galaxy surveys Measuring large-scale structure neutral hydrogen L1: L3: L2:
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Springel, Frenk & White 2006, Nature, 440, 11
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS de Lapparent, Geller & Huchra 1986
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Cmbgg OmOl LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 PSCz gals: (Data points uncorrelated) (Hamilton, Tegmark & Padmanabhan 2000)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS 2006: 2dFGRS gals SDSS DR gals, now ~10 6 gals
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 APO SDSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS Zoom SDSS
Cmbgg OmOl
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 (Table from Natalie Roe) SOME SURVEYS TO LOOK FORWARD TO:
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LAMOST: The Large Sky Area Multi-Object Fibre Spectroscopic Telescope
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Why are LRGs so useful?
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/ Our observable universe
LSS Our observable universe
LSS Our observable universe
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Quasars
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS LRG’s
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Common galaxies
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”: LRG’s have more statistical power than 2 million regular gals
Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities Measuring large-scale structure with galaxy surveys: what are the challenges? P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 MT, Hamilton, Strauss, Vogeley & Szalay 1998 SDSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Bias
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Virgo LCDM simulation CMB
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS galaxies CMB
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS Lum funcs & sel funcs by Michael Blanton (NYU)
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
Molly Swanson, MT, Mike Blanton, Idit Zehavi: arXiv:
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 LSS
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1