Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Vorlesung Quantum Computing SS 08 1 Quantum Computing.
Vorlesung Quantum Computing SS 08 1 quantum parallelism a 1 F |00> + a 2 F |01> + a 3 F |10> + a 4 F |11> a 1 |00> + a 2 |01> + a 3 |10> + a 4 |11> input.
University of Strathclyde
Data Structures: A Pseudocode Approach with C
ABC Technology Project
Quantum Information Processing with Semiconductors Martin Eberl, TU Munich JASS 2008, St. Petersburg.
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
1 Trey Porto Joint Quantum Institute NIST / University of Maryland DAMOP 2008 Controlled interaction between pairs of atoms in a double-well optical lattice.
Introduction to Quantum Computers Goren Gordon The Gordon Residence July 2006.
Squares and Square Root WALK. Solve each problem REVIEW:
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Sets Sets © 2005 Richard A. Medeiros next Patterns.
SIMOCODE-DP Software.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
25 seconds left…...
Slippery Slope
Week 1.
We will resume in: 25 Minutes.
Figure Essential Cell Biology (© Garland Science 2010)
PSSA Preparation.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
prime factorization algorithm found by Peter Shor 1994
( ( ) quantum bits conventional bit
Optically polarized atoms
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Superconducting qubits
electrostatic ion beam trap
Trapped Ions and the Cluster State Paradigm of Quantum Computing Universität Ulm, 21 November 2005 Daniel F. V. JAMES Department of Physics, University.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Simple quantum algorithms with an electron in a Penning Trap David Vitali, Giacomo Ciaramicoli, Irene Marzoli, and Paolo Tombesi Dip. di Matematica e.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )

Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Liquid State NMR Quantum Computing
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan.
DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 1/22 Whither Quantum Computing? 2007 CQCT ANNUAL WORKSHOP.
Quantum Computing with Trapped Atomic Ions
Quantum computation: Why, what, and how I.Qubitology and quantum circuits II.Quantum algorithms III. Physical implementations Carlton M. Caves University.
Implementation of Quantum Computing Ethan Brown Devin Harper With emphasis on the Kane quantum computer.
Quantum Control Classical Input Classical Output QUANTUM WORLD QUANTUM INFORMATION INSIDE Preparation Readout Dynamics.
Quantum Computation With Trapped Ions Brian Fields.
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum Computing: An Overview for non-specialists Mikio Nakahara Department of Physics & Research Centre for Quantum Computing Kinki University, Japan.
1 Quantum Computation with coupled quantum dots. 2 Two sides of a coin Two different polarization of a photon Alignment of a nuclear spin in a uniform.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Capture, sympathetic cooling and ground state cooling of H + ions for the project Laurent Hilico Jean-Philippe Karr Albane Douillet Nicolas Sillitoe Johannes.
Measurement Science Science et étalons
Preparing antihydrogen at rest for the free fall in
Ion Trap Quantum Computing and Teleportation
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Presentation transcript:

Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation time A qubit-specific measurement capability A A universal set of quantum gates U The ability to initialize the state of the qubits to a simple fiducial state, e.g. |00...0> DiVincenzo criteria DiVincenzo: Fortschr. Phys. 48 (2000) 9-11, pp

Vorlesung Quantum Computing SS 08 2 Quantum Computing with Ions in Traps How to trap ions State preparation Qubit operations CNOT Deutsch – Jozsa Algorithm advantages/drawbacks

Vorlesung Quantum Computing SS 08 3 Paul Trap Nobel Prize 1989 centre is field free quadrupole field x and y motions not coupled! Chemnitz University

Vorlesung Quantum Computing SS 08 4 Linear Trap x y z U1U1 R U ac U ac (t) = U r + V 0 cos T t effective potential: eff = x 2 x 2 + y 2 y 2 + z 2 z 2 x = y >> z (averaged over one rf cycle) U2U2 z0z0 M. Sasura and V. Buzek: quant-ph/

Vorlesung Quantum Computing SS 08 5 Potential

Vorlesung Quantum Computing SS 08 6 Ions in a Linear Trap z = 2 qU 12 mz 0 2 typical operation parameters: V 0 = 300 – 800 V T /2 = 16 – 18 MHz U 12 = 2000 V z 0 = 5 mm R = 1.2 mm z /2 = kHz x,y /2 = 1.4 – 2 MHz ( 40 Ca + ) 70 m 40 Ca + 24 Mg + Seidelin et al: Phys. Rev. Lett. 96, (2006) Nägerl et al: Phys. Rev. A 61, (2000)

Vorlesung Quantum Computing SS 08 7 quantum computing with ions HH -1 calculation U preparation read-out |A| time the ions are prepared to be in their ground state Doppler coolingside band cooling 1st step2nd step k B T << ħ z

Vorlesung Quantum Computing SS 08 8 Doppler cooling when absorbing a photon, also the momentum is transferred the net momentum of the spontaneous emission is zero E = ħ p = ħk E = 0 p = 0 E = ħ p = ħk k absorption for ions moving toward the laser beam the light appears blue shifted use a red detuned laser = 0 + k v Ca

Vorlesung Quantum Computing SS 08 9 side band cooling Doppler cooling gets down to k B T ħ internal electronic ground and excited state |g,|e trapped ions moving in harmonic potential states |n, n= 0,1,2… cooling: |g,n |e,n-1 |e,n-1 |g,n-1

Vorlesung Quantum Computing SS ions used as qubits electronic states as qubits (pseudo-spin) (CNOT, Deutsch-Jozsa Algorithm, Quantum-Byte) hyperfine states as qubits (CNOT, error correction, Grover Algorithm)

Vorlesung Quantum Computing SS Ca + as qubit 4 2 S 1/2 4 2 P 1/2 4 2 P 3/2 3 2 D 3/2 3 2 D 5/2 397 nm 729 nm 854 nm 866 nm |0 |1 quadrupole transition used for Laser cooling quadrupole transition with relatively long relaxation time for cooling: 866 nm transition has to be irradiated as well, otherwise charge carriers will be trapped in 3 2 D 3/2 orbital fluorescence detection for read-out detection Nägerl et al: Phys. Rev. A 61, (2000) D 5/2 occupation P D red sideband blue sideband after Doppler cooling

Vorlesung Quantum Computing SS Be + as qubit electron spin S = 1/2, m s = 1/2 nuclear spin I = 3/2, m I = 1/2, 3/2 F = I + S, m F 2 2 P 3/2 2 2 P 1/2 12 GHz 2 2 S 1/2 |F=2, m F =2 |F=1, m F =1 | | 1.25 GHz Doppler cooling hyperfine levels have long relaxation times sideband cooling |2,2 |n |1,1 |n-1 ; induced spontaneous Raman transition |1,1 |n-1 |2,2 |n-1 sideband cooling detection with fluorescence after + excitation + detection Monroe et al: Phys. Rev. Lett. 75, 4011 (1995) red blue after Doppler cooling after sideband cooling

Vorlesung Quantum Computing SS quantum computing HH -1 calculation U preparation read-out |A| time quantum-bit (qubit) 0 1 a a 2 1 = a1a1 a2a2

Vorlesung Quantum Computing SS qubit operations how does the system evolve with time? U (t) e ħ - iH QC t ^ ^ H QC = H trap + H ion + H man ^^^^ Splitting of S = ½ in external magnetic field: 2 2 S 1/2 |F=2, m F =2 |F=1, m F =1 | | s /2 = 1.25 GHz H ion = - ħ s ^ B 0 = 0.18 mT H ion = - SB = - S z B 0 = - L S z ^ ^^

Vorlesung Quantum Computing SS qubit coupling coulomb repulsion couples motional degrees of freedom H trap = ( x 2 x i 2 + y 2 y i 2 + z 2 z i 2 + ) + M 2 pi2pi2 M2M2 e2e2 4 0 |r i - r j | i=1 N N j>i trap potential eff E kin coulomb potential positions at rest 1 mode 2 modes A. Steane: quant-ph/ ^

Vorlesung Quantum Computing SS vibration modes as qubits (bus) centre of mass motion used as qubit A. Steane: quant-ph/ i=1 H trap = ( z 2 z i 2 + ) = ħ i a i a i pi2pi2 M2M2 M 2 NN i z = 2 qU 12 mz 0 2 z z 3 J.F. Poyatos et al., Fortschr. Phys. 48, 785

Vorlesung Quantum Computing SS Be + : the two qubit system 2 2 P 1/2 50 GHz 2 2 S 1/2 |F=2, m F =2 |F=1, m F =1 | | |1 | |0 |1 | |0 s /2 = 1.25 GHz z /2 = 11.2 MHz 2 2 P 3/2 |F=3, m F =3 |0 |aux |F=2, m F =0 vibrational state: control qubit hyperfine state: target qubit Raman transition + detection ~ 313 nm

Vorlesung Quantum Computing SS spin dynamics dM x dt = (M y (t)B z M z (t)B y ) dM y dt = (M z (t)B x M x (t)B z ) dM z dt = (M x (t)B y M y (t)B x ) = M y (t)B z = - M x (t)B z = dM dt = M(t) x B = M y cos( L t) - M x sin( L t) = M x cos( L t) + M y sin( L t) B = 0 0 BzBz B 1 cos t B 1 sin t B0B0 magnetic field rotating in x,y-plane

Vorlesung Quantum Computing SS spin flipping in lab frame

Vorlesung Quantum Computing SS rotating frame x y z x y z cos t sin t - sin t = r z y x xrxr yryr t t cos t sin t - sin t cos t sin t 0 B1B1 cos t -sin t 0 B1B1 + B rf = r cos 2 t 0 B rf = r B1B1 -sin 2 t B1B1 + constant counter-rotating at twice RF applied RF generates a circularly polarized RF field, which is static in the rotating frame B 1 cos t =

Vorlesung Quantum Computing SS spin flip in rotating frame

Vorlesung Quantum Computing SS qubit manipulation: laser interaction H man = - B = m S B = B 1 x cos(kz- t+ ) ^ H man (S + e i + S - e -i ) = m B 1 /2ħ ħ 2 frame of reference: H 0 = ħ s S z + ħ z a a only spin state is changed i (S + ae i - S - a e -i ) ħ 2 for = s - z red side band i (S + a e i - S - ae -i ) ħ 2 for = s + z blue side band change of vibrational state always implies change of spin state Lamb-Dicke parameter: 2 d 0 / << for = s

Vorlesung Quantum Computing SS qubit rotation 2 2 P 1/2 50 GHz 2 2 S 1/2 |F=2, m F =2 |F=1, m F =1 | | |1 | |0 |1 | |0 s /2 |0 |aux |F=2, m F =0 Qubit rotation on target qubit U /2,ion Raman transition with detuning s Duration of laser pulse: /2 rotation 2 e = i ħ S y cos /4 sin /4 - sin / = = U /2

Vorlesung Quantum Computing SS /2- rotation matrix U /2,ion = base vectors of the two–qubit register: Transformation matrix: U /2,ion = ( )

Vorlesung Quantum Computing SS CNOT operation - U ph = U ph transformation matrix: Transformation sequence: U /2,ion =U - /2,ion U ph = = U CNOT Monroe et al: Phys. Rev. Lett. 75, 4714 (1995)

Vorlesung Quantum Computing SS phase rotation 2 2 P 1/2 50 GHz 2 2 S 1/2 |F=2, m F =2 |F=1, m F =1 | | |1 | |0 |1 | |0 s /2 |0 |aux |F=2, m F =0 Phase rotation on control qubit U ph Raman transition between and auxiliary state Full rotation by 2 U ph

Vorlesung Quantum Computing SS quantum computing HH -1 calculation U preparation read-out |A| time quantum-bit (qubit) 0 1 a a 2 1 = a1a1 a2a2

Vorlesung Quantum Computing SS Be ions: read-out spin state |F=2, m F =2 | |1 | |0 2 2 P 3/2 |F=3, m F =3 2 2 S 1/2 |F=1, m F =1 | |1 | |0 + detection read-out spin state via fluorescence prepare desired initial state using Raman pulses | on blue side band |1 on internal state |1 | perform CNOT cool system to | |0

Vorlesung Quantum Computing SS Be ions: read out vibrational state |F=2, m F =2 | |1 | |0 2 2 P 3/2 |F=3, m F =3 2 2 S 1/2 |F=1, m F =1 | |1 | |0 + detection read-out spin state prepare same initial state and do CNOT convert vibrational into spin state on red side band for | on blue side band for | read-out spin state via fluorescence