Part 3 Linear Programming

Slides:



Advertisements
Similar presentations
Introduction to Game Theory
Advertisements

9.1 Strictly Determined Games Game theory is a relatively new branch of mathematics designed to help people who are in conflict situations determine the.
GAME THEORY.
Module 4 Game Theory To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides created by Jeff Heyl.
Totally Unimodular Matrices
Game Theory S-1.
APPENDIX An Alternative View of the Payoff Matrix n Assume total maximum profits of all oligopolists is constant at 200 units. n Alternative policies.
A Beautiful Game John C. Sparks AFRL/WS (937) Wright-Patterson Educational Outreach The Air Force Research Laboratory.
A very little Game Theory Math 20 Linear Algebra and Multivariable Calculus October 13, 2004.
Simultaneous- Move Games with Mixed Strategies Zero-sum Games.
Two-Player Zero-Sum Games
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
1 Chapter 4: Minimax Equilibrium in Zero Sum Game SCIT1003 Chapter 4: Minimax Equilibrium in Zero Sum Game Prof. Tsang.
MIT and James Orlin © Game Theory 2-person 0-sum (or constant sum) game theory 2-person game theory (e.g., prisoner’s dilemma)
Game theory.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 15 Game Theory.
Game Theory. “If you don’t think the math matters, then you don’t know the right math.” Chris Ferguson 2002 World Series of Poker Champion.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Zero-Sum Games (follow-up)
Part 3: The Minimax Theorem
Chapter 14 Game Theory to accompany Operations Research: Applications and Algorithms 4th edition by Wayne L. Winston Copyright (c) 2004 Brooks/Cole, a.
Homework Solutions MGMT E-5070 Game Theory Computer-Based Manual.
Duality Lecture 10: Feb 9. Min-Max theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum Cut Both.
Matrix Games Mahesh Arumugam Borzoo Bonakdarpour Ali Ebnenasir CSE 960: Selected Topics in Algorithms and Complexity Instructor: Dr. Torng.
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
Lectures in Microeconomics-Charles W. Upton Minimax Strategies.
UNIT II: The Basic Theory Zero-sum Games Nonzero-sum Games Nash Equilibrium: Properties and Problems Bargaining Games Bargaining and Negotiation Review.
Games of Chance Introduction to Artificial Intelligence COS302 Michael L. Littman Fall 2001.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 68 Chapter 9 The Theory of Games.
Game Theory Objectives:
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna S-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Supplement 1.
Game Theory.
UNIT II: The Basic Theory Zero-sum Games Nonzero-sum Games Nash Equilibrium: Properties and Problems Bargaining Games Bargaining and Negotiation Review.
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
Minimax Strategies. Everyone who has studied a game like poker knows the importance of mixing strategies. –With a bad hand, you often fold –But you must.
Game Theory Statistics 802. Lecture Agenda Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for.
Game Theory.
Game Theory.
Minimax Trees: Utility Evaluation, Tree Evaluation, Pruning CPSC 315 – Programming Studio Spring 2008 Project 2, Lecture 2 Adapted from slides of Yoonsuck.
Brian Duddy.  Two players, X and Y, are playing a card game- goal is to find optimal strategy for X  X has red ace (A), black ace (A), and red two (2)
To accompany Quantitative Analysis for Management,9e by Render/Stair/Hanna M4-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Module 4 Game.
Game Theory Warin Chotekorakul MD 1/2004. Introduction A game is a contest involving to or more players, each of whom wants to win. Game theory is the.
Game Theory Part 2: Zero Sum Games. Zero Sum Games The following matrix defines a zero-sum game. Notice the sum of the payoffs to each player, at every.
Chapter 11 Game Theory Math Game Theory What is it? – a way to model conflict and competition – one or more "players" make simultaneous decisions.
THE “CLASSIC” 2 x 2 SIMULTANEOUS CHOICE GAMES Topic #4.
Game theory is the study of the best play–safe strategy to adopt if 2 players are playing a game where decisions affect each other. Ex Two men are caught.
GAME PLAYING 1. There were two reasons that games appeared to be a good domain in which to explore machine intelligence: 1.They provide a structured task.
1 1 Slide © 2006 Thomson South-Western. All Rights Reserved. Slides prepared by JOHN LOUCKS St. Edward’s University.
When dealing with a model, we use the letter  for the mean. We write or, more often, replacing p by, Instead of , we can also write E(X ). ( Think of.
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Lecture 12. Game theory So far we discussed: roulette and blackjack Roulette: – Outcomes completely independent and random – Very little strategy (even.
1. 2 Some details on the Simplex Method approach 2x2 games 2xn and mx2 games Recall: First try pure strategies. If there are no saddle points use mixed.
1. 2 You should know by now… u The security level of a strategy for a player is the minimum payoff regardless of what strategy his opponent uses. u A.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 a1a1 A1A1 a2a2 a3a3 A2A Mixed Strategies When there is no saddle point: We’ll think of playing the game repeatedly. We continue to assume that.
Zero-sum Games The Essentials of a Game Extensive Game Matrix Game Dominant Strategies Prudent Strategies Solving the Zero-sum Game The Minimax Theorem.
Statistics Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for Windows software Modeling.
INDEX Introduction of game theory Introduction of game theory Significance of game theory Significance of game theory Essential features of game theory.
Picking Apples. Subtraction game. Turn over two cards from 0-10 Work out the difference. If you have an apple with this amount put a counter on it. First.
GAME THEORY Day 5. Minimax and Maximin Step 1. Write down the minimum entry in each row. Which one is the largest? Maximin Step 2. Write down the maximum.
9.2 Mixed Strategy Games In this section, we look at non-strictly determined games. For these type of games the payoff matrix has no saddle points.
Game Algorithms Prepared for COSC 6111 By Stephanie Wilson November 15th, 2006.
Game Theory [geym theer-ee] : a mathematical theory that deals with the general features of competitive situations in a formal abstract way.
Lecture 13.
Tools for Decision Analysis: Analysis of Risky Decisions
Chapter 6 Game Theory (Module 4) 1.
Game Theory.
Solutions Sample Games 1
Game Theory Solutions 1 Find the saddle point for the game having the following payoff table. Use the minimax criterion to find the best strategy for.
Game Theory Solutions 1 Find the saddle point for the game having the following payoff table. Use the minimax criterion to find the best strategy for.
Presentation transcript:

Part 3 Linear Programming 3.6 Game Theory

Example

Mixed Strategy It is obvious that X will not do the same thing every time, or Y would copy him and win everything. Similarly, Y cannot stick to a single strategy, or X will do the opposite. Both players must use a mixed strategy, and furthermore the choice at every turn must be absolutely independent of the previous turns. Assume that X decides that he will put up 1 hand with frequency x1 and 2 hands with frequency x2=1-x1. At every turn this decision is random. Similarly, Y can pick his probabilities y1 and y2=1-y1. It is not appropriate to choose x1=x2=y1=y2=0.5 since Y would lose $20 too often. But the more Y moves to a pure 2-hand strategy, the more X will move toward 1 hand.

Equilibrium Does there exist a mixed strategy y1 and y2 that, if used consistently by Y, offers no special advantage to X? Can X choose the probabilities x1 and x2 that present Y with no reason to change his own strategy? At such equilibrium, if it exists, the average payoff to X will have reached a saddle point. It is a maximum as far as X is concerned, and a minimum as far as Y is concerned. To find such a saddle point is to “solve” the game.

Best Strategy for X

Best Strategy for Y

Significance of Solution Such a saddle point is remarkable, because it means that X plays his 2-hand strategy only 2/5 of the time, even though it is this strategy that gives him a chance at $20. At he same time, Y is forced to adopt a losing strategy – he would like to match X, but instead he uses the opposite probabilities 2/5 (1 hand) and 3/5 (2 hand).

Matrix Game X has n possible moves to choose from, and Y has m. Thus, the dimension payoff matrix A is m by n. The entry aij in A represents the payment received by X when he chooses his jth strategy and Y chooses his ith. A negative entry means a win for Y.

Matrix Game

Example

Fair Game

Example

Equivalent Payoff Matrix A matrix (E) that has every entry equal to 1. Adding a multiple of E to the payoff matrix, i.e. A→A+cE, simply means that X wins an additional amount c at every turn. The value of the game is increased by c, but there is no reason to change the original strategies.

Minimax Theorem

Interpretation of Minimax Theorem from Player X’s Viewpoint

Interpretation of Minimax Theorem from Player Y’s Viewpoint

Connections Between Game Theory and Duality in LP – (1)

Connections Between Game Theory and Duality in LP – (2)

Connections Between Game Theory and Duality in LP – (3)