©LZH ZA GEO 600 Laser System as in the optics lab of Callinstraße 38 at 12.08.2000 LIGO-G000228-00-D.

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
CAVITY RING DOWN SPECTROSCOPY
Present status of the laser system for KAGRA Univ. of Tokyo Mio Lab. Photon Science Center SUZUKI, Ken-ichiro.
10W Injection-Locked CW Nd:YAG laser
CNMFrascati 12/01/061 High Power Laser System for Advanced Virgo C.N.Man Design goals Present technology Other activities in the world Virgo+ and Laser.
8. Optical Modulation. Modulation Techniques Direct modulation of laser diode –Vary the current supply to the laser diode –Directly modulates the output.
Resonant Faraday Rotation in a Hot Lithium Vapor Scott Waitukaitis University of Arizona, Department of Physics May 2007.
An optomechanical transducer for the AURIGA “bar” gw detector cryogenic optics towards the quantum limit: high finesse cavities, fibers, piezo actuators,
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
LSU Amplifier Experiments Rupal S. Amin (LSU) J. Giaime (LSU), D. Hosken (Uni. Adelaide), D. Ottaway (MIT) LSC/VIRGO Meeting March 2007 Lasers Working.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Analysis of Phase Noise in a fiber-optic link
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
LISA STUDIES AT THE UNIVERSITY OF COLORADO Michael J. Nickerson, Ellery B. Ames, John L. Hall, and Peter L. Bender JILA, University of Colorado and NIST,
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
Fiber-Optic Accelerometer Using Wavefront-Splitting Interferometry Hsien-Chi Yeh & Shulian Zhang July 14, 2006.
NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
ULTRA-BROAD BANDWIDTH CAVITY ENHANCED ABSORPTION SPECTROSCOPY Paul S. Johnston Kevin K. Lehmann Department of Chemistry University of Virginia.
B. Willke, Mar 01 LIGO-G Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001.
MONALISA an Update David Urner Paul Coe Matthew Warden Armin Reichold Monitoring, Alignment & Stabilisation with high Accuracy.
Advanced LIGO laser development P. Weßels, L. Winkelmann, O. Puncken, B. Schulz, S. Wagner, M. Hildebrandt, C. Veltkamp, M. Janssen, R. Kluzik, M. Frede,
50 W Laser Concepts for Initial LIGO Lutz Winkelmann, Maik Frede, Ralf Wilhelm, Dietmar Kracht Laser Zentrum Hannover LSC March 05 Livingston G Z.
©LZH Livingston, La.; LIGO-G Status of 100 W Rod System at LZH Laserzentrum Hannover e. V. Hollerithallee 8 D Hannover Germany.
Parametric Instabilities and Control Li Ju ( 鞠莉), Chunnnong Zhao, David Blair Jiayi Qin, Qi Fang, Carl Blair, Jian Liu University of Western Australia.
Stanford High Power Laser Lab Status of high power laser development for LIGO at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert.
Flat-Top Beam Profile Cavity Prototype
Fiber-laser-based NICE-OHMS
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Development of high-power and stable laser for gravitational wave detection Mio Laboratory Kohei Takeno.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Long Term Stability in CW Cavity Ring-Down Experiments
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
UCLA IEEE NATCAR 2004 SUMMER CLASS Magnetic Sensors & Power Regulation.
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
10-meter Interferometer Results M. Woods (special thanks to Steve Myers and Tim Slaton) Jan. 31, 2000 Commissioning Setup System Noise Monte Carlo simulation.
An H- stripping laser using commercial, diode-pumped Nd:YAG amplifiers Russell Wilcox Laser Stripping Workshop, April 11, 2011.
0 Frequency Gain 1/R 1 R 2 R 3 0 Frequency Intensity Longitudinal modes of the cavity c/L G 0 ( ) Case of homogeneous broadening R2R2 R3R3 R1R1 G 0 ( )
High power lasers and their stabilization Benno Willke ET Workshop, Cascina 2008.
The cancelation of displacement- and frequency- noise using four mach-zehnder interferometer Keiko Kokeyama Ochanomizu University / NAOJ.
1 Opto-Acoustic Imaging 台大電機系李百祺. 2 Conventional Ultrasonic Imaging Spatial resolution is mainly determined by frequency. Fabrication of high frequency.
Absorption Small-Signal Loss Coefficient. Absorption Light might either be attenuated or amplified as it propagates through the medium. What determines.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Single-frequency fiber amplifier development for next- generation GWDs
bKAGRA PSL Design Study
Practical advices for using TCT (mostly for Particulars setups)
Current Situation of Yb:YAG Laser at A1 Ground Laser Hut
Laser System Upgrade Overview
Light-Matter Interaction
Single and dual wavelength Er:Yb double clad fiber lasers
Fiber lasers for GW detectors
Robert Lahmann VLVnT – Toulon – 24-April-2008
J. Kovalik, LIGO Livingston Observatory
A. Bramati M. Romanelli E. Giacobino
Injection seeded ns-pulsed Nd:YAG laser at 1116 nm for Fe-Lidar
Lasers for Advanced Interferometers
Present status of the laser system for KAGRA
Advanced LIGO Quantum noise everywhere
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Department of photonics, National Cheng Kung University
Flat-Top Beam Profile Cavity Prototype
Fiber Laser Part 1.
Talk prepared by Stefan Hild AEI Hannover for the GEO-team
Presentation transcript:

©LZH ZA GEO 600 Laser System as in the optics lab of Callinstraße 38 at LIGO-G D

©LZH ZA New Features of GEO 600 Slave Laser Resonator spacer and base plate made of Invar (FeNi36 / ) –low thermal expansion   8x10 -7 / K (average 20-50°C) (thermal change of optical path length in air at const. pressure   - 9x10 -7 / K) Diode laser power monitor

©LZH ZA GEO 600 Slave Laser

©LZH ZA GEO 600 Slave Laser

©LZH ZA GEO 600 Slave Laser

©LZH ZA “Long Term” Stability Maximum power after two mirrors and an adjustable attenuator consisting of a polarizer a half wave plate and a 2nd polarizer. Laser left untouched, attenuator varied for different purposes 2 % / 1.5 % pump power drop observed over full 21 day period

©LZH ZA “Long Term” stability II (20 h preliminary) All other acquired data stable to measurement resolution –room temperature: 1 K –pump power: 0.2 % –output power : 1%

©LZH ZA Slave Intensity Noise Suppression

©LZH ZA Slave Intensity Noise Suppression Transfer of Pump Current Modulation to Amplitude Modulation

©LZH ZA Slave Intensity Noise Suppression Full Open Loop Transferfunction of AM Servo (preliminary setup)

©LZH ZA Slave Intensity Noise Suppression First Results (of preliminary setup)

©LZH ZA Power Scaling of End Pumped Nd:YAG

©LZH ZA Power Scaling of End Pumped Nd:YVO 4 Advantages of Nd:YVO 4 1) amplifies 1064 nm emission of Nd:YAG (? at what temperature difference ?) birerefingence n a = 1.96 / n c = 2.17  no depolarization emission  || = 25x cm -2   = 7x cm -2  polarized emission large product of  ||  sp (  sp  90  s)  loss insensitive high gain lasers 8 nm broad 808 nm  low requirements on pump diodes Disadvantage of Nd:YVO 4 1) low pump intensity damage threshold 58 W / mm 0.5 % doping 29 W / mm 1.0 % doping increased by 50 % by undoped endcaps 1) Data from Y.-F. Chen, IEEE J. Q. E. 35(2), 234 (1999) / Tsunekane et. al. Elt. Lett. 32(1), 41 (1996) / VLOC, Casix, Castech web pages

©LZH ZA Problems of the slave Atmospheric pressure changes –  p  dl/(l dp)  2.8x10 -7 / hPa –50 hPa and 0.5 m  7  m Mirrors on single long range piezos tilt –  10  rad /  m Long range piezos have large low frequency resonances

©LZH ZA Possible Solutions Sophisticated piezo mount pre tension / damping / thick mirrors multiple piezos Thermal length actuator 30 mm Al/FeNi36  0.5  m / K pessimistic assumption:  f  10 6 Hz / Hz 1/2, f x-over  0.01 Hz  piezo:  l RMS  10 nm Hermetically airproof resonator constant density of air  nearly constant optical path length expansion dependent on spacer material only  Suprainvar / Zerodur / ULE