Ultra-high Energy Cosmic Rays: Challenges and Opportunities Renxin Xu ( 徐仁新 ) School of Physics, Peking University Talk presented at the Conference of 基于羊八井平台的交叉学科研究 April 6, 2004, CCAST “UHECRs” R.X. Xu
SUMMARY Introduction: CRs as HEP Frontier Introduction: CRs as HEP Frontier UHECRs beyond the GZK cutoff UHECRs beyond the GZK cutoff UHECRs I: beyond standard lore? UHECRs I: beyond standard lore? Lorentz Invariance TDs: fossils of the GU era Z-bursts Others UHECRs II: or strangelets? UHECRs II: or strangelets? Conclusions Conclusions “UHECRs” R.X. Xu
Introduction: CRs as HEP Frontier “UHECRs” R.X. Xu The higher the particle energy attained, the smaller __the scale of physics which can be probed. Cosmic rays vs. Particle physics 1937 (Anderson & Neddermeyer): 1947(Power): 1947( Rochester & Butler): strange part. 0, K,... Cosmic rays vs. Astrophysics Generally, astrophysics studies “cosmic rays” Astrophysics offers extreme environments
Introduction: CRs as HEP Frontier “UHECRs” R.X. Xu UHECRs: >~10 19 eV The highest! Within the Galaxy
SUMMARY Introduction: CRs as HEP Frontier Introduction: CRs as HEP Frontier UHECRs beyond the GZK cutoff UHECRs beyond the GZK cutoff UHECRs I: beyond standard lore? UHECRs I: beyond standard lore? Lorentz Invariance TDs: fossils of the GU era Z-bursts Others UHECRs II: or strangelets? UHECRs II: or strangelets? Conclusions Conclusions “UHECRs” R.X. Xu
UHECRs beyond the GZK cutoff “UHECRs” R.X. Xu u GZK cutoff: estimations E p ~ eV, ~ E p /1GeV ~ E CB ~ 3 K ~ eV Electron rest frame E’ CB ~ E CB ~ MeV Greisen PRL (1966); Zatsepin & Kuzmin JETP (1966)
UHECRs beyond the GZK cutoff “UHECRs” R.X. Xu u GZK cutoff: in theory Loss length for Proton with pair and photopion productions Scale of the Galaxy
u The GZK cutoff with threshold u Other particles Photon, Iron UHECRs beyond the GZK cutoff “UHECRs” R.X. Xu
UHECRs beyond the GZK cutoff “UHECRs” R.X. Xu u No clear GZK cutoff observed Stecker 2003
UHECRs beyond the GZK cutoff “UHECRs” R.X. Xu u Prediction vs. observation Stecker 2003
SUMMARY Introduction: CRs as HEP Frontier Introduction: CRs as HEP Frontier UHECRs beyond the GZK cutoff UHECRs beyond the GZK cutoff UHECRs I: beyond standard lore? UHECRs I: beyond standard lore? Lorentz Invariance TDs: fossils of the GU era Z-bursts Others UHECRs II: or strangelets? UHECRs II: or strangelets? Conclusions Conclusions “UHECRs” R.X. Xu
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu Lorentz symmetry (invariance) Essence of special relativity: no absolute reference frame Poincare group = T(4) + O(1, 3) Lorentz group O(1, 3) = 3R + 3R´ light propagates at a maximum constant speed c in all reference boos ts
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu Mc l ~ l ~ /(Mc) Quantum space-time foam Heisenberg relation Schwartzschild radius R s ~ GM/c 2 Virtual particles contribute to curvature significantly when R s ~ l Plank mass: M pl = ( c/G) 1/2 = 2.18 g = 1.22 TeV
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu Lorentz violation? (Jacobson, T., Liberati, S. & Mattingly, D. Nature 424, 1019–1021, 2003) Photons: Electrons: opposites for L or R Modified dispersion relations?
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u LV of UHECRs? Coleman and Glashow ( 1999, PRD59, ): show that only a very tiny amount of LI symmetry breaking is required to avoid the GZK effect by suppressing photomeson interactions between ultrahigh energy protons and the CBR.
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u TD: fossils of the GU era Topological defects (TD) may be produced at the post- inflation stage of the early Universe: e.g., monopoles, cosmic strings, monopoles connected by strings, etc. Superheavy particles (called X-particles ) could be emitted during TD evolution; e.g., annihilation of monopole- antimonopole. X-particles could be: superheavy Higgs particles gauge bosons massive SUSY particles
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u TD: fossils of the GU era Fragmentation of X-particles
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u TD: fossils of the GU era Berezinsky et al. PRD (1998)
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u Z-bursts Weakly interacting particles such as neutrinos will have no difficulty in propagating over extragalactic distances Difficulty in the neutrino hypothesis: The fly’s Eye event occurred high in the atmosphere, whereas the expected event rate for early development of neutrino-induced air shower is down from that of an electromagnetic or hadronic interaction by six orders of magnitude. But
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u Z-bursts Weiler, T. 1999, Astropart. Phys., Larger cross section of resonant Z 0 production by - occurs for E = m z 2 /(2m ) ~ 4 /(m /eV) eV [m z ~ 91 GeV, m ~ ( ) eV; ~ cm 2 ] Clustering of the 1.9 K cosmic background neutrinos ~70% of interactions Z-burst : photons (~30) + nucleons (~2.7) These photons and nucleons produced within our supergalactic halo propagate to earth and initiate super- GZK air showers
UHECRs I: beyond standard lore? “UHECRs” R.X. Xu u Others Ultraheavy dark matter particles: ‘ wimpzillas ’ Other new particles: e.g., neutral hadrons containing a light gluino
SUMMARY Introduction: CRs as HEP Frontier Introduction: CRs as HEP Frontier UHECRs beyond the GZK cutoff UHECRs beyond the GZK cutoff UHECRs I: beyond standard lore? UHECRs I: beyond standard lore? Lorentz Invariance TDs: fossils of the GU era Z-bursts Others UHECRs II: or strangelets? UHECRs II: or strangelets? Conclusions Conclusions “UHECRs” R.X. Xu
Black holes in our Universe Supermassive black holes Stellar black holes Primordial black holes TeV-scale black holes? “UHECRs” R.X. Xu
Why TeV-scale BHs The hierarchy problem and EDs u The Plank scale u But, the electroweak scale “UHECRs” R.X. Xu
Why TeV-scale BHs Arkani-Hamed, Dimopoulos & Dvali 1998, Phys. Lett. B The geometry with Extra spatial Demensions (EDs) might be responsible for the hierarchy between M pl and M EW. u The fundamental gravity scale with n EDs “UHECRs” R.X. Xu
u What if M * ~ M EW ~ TeV... Why TeV-scale BHs Implication I: Large EDs with Radius R Observation? “UHECRs” R.X. Xu
Why TeV-scale BHs Implication II: TeV-scale mini black holes “UHECRs” R.X. Xu
The interaction of UHE with... u When the c.m. energy E cm =(2c 2 m q E ) 1/2 > M *, A TeV-scale black hole forms, with an interaction cross section BH ~ r s 2 E UHE. Quark rsrs “UHECRs” R.X. Xu
The interaction of UHE with... u Gravity interaction dominates if E > ~10 15 eV Feng-Shapere PRL 88 (2002) “UHECRs” R.X. Xu Increase the cross section! Economic ideal: UHE
The interaction of UHE with... u The Schwartzchild radius, with n EDs u The Hawking radiation, with n EDs “UHECRs” R.X. Xu
The interaction of UHE with... u UHE bombarding a nucleon: in relativistic heavy ion colliders in atmospheric detectors u UHE bombarding a Bare SS: Collapse to a stellar black hole? “UHECRs” R.X. Xu
u What is a Bare Strange Star? o crusted o bare The interaction of UHE with... “UHECRs” R.X. Xu
The interaction of UHE with... Possible evidence for bare strange stars Drifting subpulses in radio emission No atomic spectrum in X-ray emission Extreme super-Eddington emission in SGRs Glitch and free-precession of radio pulsars For reviews, see: Xu (astro-ph/ ) Xu (astro-ph/ ) “UHECRs” R.X. Xu
The interaction of UHE with... u Two steps of collapse: à 1st: “UHECRs” R.X. Xu
The interaction of UHE with... à 2nd: “UHECRs” R.X. Xu
The interaction of UHE with... à BSSs as probe to the flux of UHE Exist of BSS “UHECRs” R.X. Xu
ML03 UHECRs: Strangelets? u What is Strangelet?=> A lump of strange matter u Advantages if UHECRs are strangelets: Larger mass Byond GZK cutoff Higher electricity Easier to accelerate Not point-like No collapse to BHs “UHECRs” R.X. Xu
UHECRs: Strangelets? u What is the astrophysical origin of strangelets? in early cosmology? after supernova exploration! Acceleration in induced electric field ~ /P 10 eV strangelets left behind in debris disk Planets observed around radio pulsars? Soft -ray Repeater: burst via collision? “UHECRs” R.X. Xu
SUMMARY Introduction: CRs as HEP Frontier Introduction: CRs as HEP Frontier UHECRs beyond the GZK cutoff UHECRs beyond the GZK cutoff UHECRs I: beyond standard lore? UHECRs I: beyond standard lore? Lorentz Invariance TDs: fossils of the GU era Z-bursts Others UHECRs II: or strangelets? UHECRs II: or strangelets? Conclusions Conclusions “UHECRs” R.X. Xu
“UHECRs: Strangelets?” R.X. Xu Conclusions u The cosmic ray study at the highest energy __(UHECRs) is again the frontier of Part. Ph. u UHECRs could potentially open a window __to probe new physics beyond the SM u Strangelets may be candidates of UHECRs, __and may even contribute a significant part __of cosmic rays with energy < eV!