Влияние процессов многократного рассеяния на квантовый транспорт электронов в магнитном поле через анизотропный атом В.В. Вальков, С.В. Аксенов, Е.А. Уланов.

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Spectroscopy at the Particle Threshold H. Lenske 1.
Huckel I-V 3.0: A Self-consistent Model for Molecular Transport with Improved Electrostatics Ferdows Zahid School of Electrical and Computer Engineering.
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Stability analysis of metallic nanowires: Interplay of Rayleigh and Peierls Instabilities Daniel Urban and Hermann Grabertcond-mat/ Jellium model:
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Influence of gases on the formation of atomic gold wires By using a Mechanically Controlled Break Junction (MCBJ) at 4.2 K it is possible to form atomic.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
Introduction to the Kondo Effect in Mesoscopic Systems.
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Wittenberg 2: Tunneling Spectroscopy
Theory of the Quantum Mirage*
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Frequency dependence of the anomalous Hall effect: possible transition from extrinsic to intrinsic behavior John Cerne, University at Buffalo, SUNY, DMR.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Electronic Conduction of Mesoscopic Systems and Resonant States Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo Collaborators: Akinori.
Atomic-scale Engeered Spins at a Surface
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Modeling thermoelectric properties of TI materials: a Landauer approach Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical.
Department of Chemistry and Biochemistry CHM Reeves CHM 101 – Chapter Six The Wave Nature of Light Quantized Energy and Photons Line Spectra and.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Conduction and Transmittance in Molecular Devices A. Prociuk, Y. Chen, M. Shlomi, and B. D. Dunietz GF based Landauer Formalism 2,3 Computing lead GF 4,5.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Single-molecule-mediated heat current between an electronic and a bosonic bath In Collaboration with: Avi Schiller, The Hebrew University Natan Andrei,
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Single Molecular Magnets
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Magnon Another Carrier of Thermal Conductivity
Bulk Hybridization Gap and Surface Conduction in the Kondo Insulator SmB 6 Richard L. Greene, University of Maryland College Park, DMR Recently,
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
ВСЕ О ТРИОНАХ Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Resistance Minimum in Dilute Magnetic Alloys Ref)Jun Kondo Resistance Minimum in Dilute Magnetic Alloys Prog. Theor. Phys.32(1964)37-49 Osaka Univ. Miyake.
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Tunable excitons in gated graphene systems
QUANTUM-EFFECT DEVICES (QED)
Vivek Sinha (09MS 066) Amit Kumar (09 MS 086)
Spin and Orbital Magnetism of Atoms on MgO
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spectroscopy of ultracold bosons by periodic lattice modulations
Kondo effect Him Hoang
Fig. 1 Sensing scheme with an atomic spin sensor.
Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal by Hiroyuki Inoue, András Gyenis, Zhijun Wang, Jian Li,
Deformation of the Fermi surface in the
Presentation transcript:

Влияние процессов многократного рассеяния на квантовый транспорт электронов в магнитном поле через анизотропный атом В.В. Вальков, С.В. Аксенов, Е.А. Уланов Лаборатория теоретической физики ИФ СО РАН, Сибирский аэрокосмический университет 1 XX Уральская международная зимняя школа по физике полупроводников февраля 2014 г.

Outline Experiments on quantum transport through magnetic atomic structures: manifestation of many-body interactions Fano resonances in transport characteristics of spin structures and the magnetoresistance connected with them Effects of multiple inelastic scattering on transport properties of a single anisotropic magnetic impurity with nonequilibrium Green functions and Keldysh diagram technique 2

H.B. Heersche et al., PRL 96, (2006) Tunnel regime: a). Coulomb-blockade-like behavior b). Negative differential conductance Transport through individual atoms and molecules in break junction 3 T≤ 0.3 K Mn 12 molecule C. Timm, F. Elste, PRB 73, (2006) - theory Differential conductance map M.-H. Jo, et al., NanoLett. 6, 2014 (2006) T=3 K

W. Liang et al., Nature 417, 725 (2002) Strong coupling: Kondo resonance T=20 K T=0.3 K Transport through individual atoms and molecules in break junction 4 V 2 – based molecule L.I. Glazman and M.E. Raikh, JETP Lett. 47, 452 (1988) – theory of the effect M. N. Kiselev, K. Kikoin, and L. W. Molenkamp, PRB 68, (2003) – double QDs

Differential conductance measurements of single manganese atoms The reason of step in the conductance spectrum for H≠0 is availability of additional transport channel which is defined by lesser value of Mn spin projection S z. T=0.6 K A.J. Heinrich et al., Science 306, 466 (2004). Images obtained by scanning tunneling microscope (STM) (I=50 pA, V=100 mV) Geometry of the experiment 5

Scanning tunneling spectroscopy (STS) of manganese chains adsorbed on thin insulating layer C.F. Hirjibehedin, C.P. Lutz, A.J. Heinrich, Science 312, 1021 (2006). STM images of 2-9 Mn chains on CuN (I=0.1 nA, V=10 mV, S Mn =5/2) T=0.6 K, B=0 T 6 Conductance spectra

Spin dimer – the simplest spin configuration is formed by… 1.…magnetic atoms C.F. Hirjibehedin, C.P. Lutz, A.J. Heinrich, Science 312, 1021 (2006). T=0.6 K 2 Mn : I= мэВ, g D =2.1±0.1 7

Manifestation of multiple scattering processes S. Loth etal., Nature Physics 6, 340 (2010). Spin-polarized spectra of a Mn atom Spin-averaging spectra of a Mn atom on a Cu2N/Cu(100) surface Energy splitting of the Mn spin states and their lifetimes 8

Spin dimer – the simplest spin configuration is formed by… 2.…magnetic molecules X. Chen et al., PRL 101, (2008) Cobalt phthalocyanine (CoPc) molecule (S=1/2) STM image (I=0.03 nA, V=0.9 V) Third layer 9 T=0.4 K

Kondo effect and the role of magnetocrystalline anisotropy M. Ternes, et al., J. Phys.: Condens. Matter (2009) A.F. Otte, et al., Nature Phys. 4, 847 (2008) The dependence of the conductance steps’ shifts on the magnetic field direction is caused by strong magnetocrystalline anisotropy of an individual atom T=0.5 K T=4.7 K 10 J. Fernandez-Rossier, PRL 102, (2009); J. Fransson, et al., PRB (2010). Theory:

Antiferromagnetic Fe chain as information bit The magnetic anisotropy is ~50 times stronger in Fe than in Mn on Cu2N surface. The strong easy-axis anisotropy of Fe evidently stabilizes the two Neel states as observable magnetic states. Why aren’t Mn chains suitable? T=0.5 K Structures with more atoms remain stable to higher temperatures S. Loth etal., Science 335, 196 (2012). 12

Nanoobject having the dimer configuration of its spins is situated in mechanically controllable break-junction Possible experimental situation: 13 Theoretical description by tight binding method

System Hamiltonian where 14 Hamiltonian of spin dimer in external magnetic field Hamiltonian of sf-exchange interaction

Спиновый димер с обменным взаимодействием антиферромагнитного типа Состояния спинового димера классифицируются по значению суммарного спинового момента Синглетное состояние спинового димера 15

Зависимость энергий состояний спинового димера от магнитного поля H E 1) 2)3) 16

Зависимость от энергии коэффициента прохождения электрона с проекцией спина +1/2 соответствует хорошо известной зависимости для случая туннелирования квантовой частицы через двухбарьерную структуру Случай коллинеарной спиновой конфигурации: магнитное поле больше критического 17

Зависимость общего коэффициента прохождения Т и его компонент T 00, T 10, T 11 от E при E H =15, E I =1.5, A=30 для основного состояния: Неколлинеарная спиновая конфигурация: магнитное поле больше критического 18

Неколлинеарная спиновая конфигурация: магнитное поле больше критического 1) 2)3) 2) 19

Зависимость общего коэффициента прохождения Т и его компонент T 00, T 10, T 11 от E при E H =15, E I =1.5, A=30 для основного состояния: Видна важная роль спин-флип процессов для спин-зависящего транспорта 20

Индуцирование магнитным полем пиков резонансного туннелирования для E I =15, A=30. Пунктир: E H =0. Сплошная линия: E H =6 (~ 10 6 Э). 23

Fano effect for electron transport through spin dimer The electron with wave vector k incidents upon dimer being in the ground singlet state and … 24

Fano effect for electron transport through spin dimer First transport channel: by using ground state of the system,, which belongs to continuous energy spectrum. 25

Fano effect for electron transport through spin dimer 26 Second transport channel: by using excited states,, which belong to discrete energy spectrum when E<I. Interference of waves referred to different paths gives rise to Fano resonances. U. Fano, Phys. Rev. 124, 1866 (1961).

Fig.3. Dependences T(E), T 00 (E), T 10 (E) и T 11 (E) for parameters of fig.1, ε D =-0.09 eV, μ B H=0.25 meV. Inset: Fano peak is induced by magnetic field. 27

Fano effect for electron transport through spin dimer New path occurs when the magnetic field is turned on. Consequently, additional Fano resonances of the transmission coefficient obtain. 28

Коэффициент прохождения и поведение антирезонансов Фано в случае полного s-f-взаимодействия где ! При H≠0 может возникнуть 4 антирезонанса, два из них исчезают при H=0 ! H=0: p=q Упрощения: 29

The influence of magnetic field on Fano resonances 30 Volt-ampere characteristic (VAC) calculations by Landauer method S. Datta, Electronic transport in mesoscopic systems, Magnetoresistance

Anomalously high magnetoresistance due to Fano effect The dependence of the antiresonance energies on A sf εD≠0εD≠0 Transmission 31 Вальков В.В., Аксенов С.В., ЖЭТФ 140, 305 (2011) Val’kov V.V., Aksenov S.V., arXiv: v1 (2011)

STM geometry 32 Suggested model 2

Electron transport through single magnetic impurity H=0 E D 0 Solution of Schrodinger equation 34 Energy spectrum of magnetic impurity with spin moment S=1

Transport through magnetic impurity 37

Spectrum of the system 38

Possible transitions from zero-fermion to one-fermion sector 39

Possible transitions from one-fermion to two-fermion sector 40

Atomic representation and Hubbard operators 41 Зайцев Р.О., ЖЭТФ, 1975, 1976

General relations theory of quantum transport using atomic representation for device L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964); A.L. Ivanov, S.G. Tikhodeev, (Eds.), Problems of Condensed Matter Physics, Clarendon Press, Oxford (2008); R.O. Zaitsev, Lekcii po kvantovoi kinetike (2009); P.I. Arseev, N.S. Maslova, Phys. Usp. 53, 1151 (2010) The spectral function of device 43

The spectral function of tunnel coupling between device and left contact 44 The spectral function of tunnel coupling between device and right contact

Zoo nonequilibrium Green's functions Keldysh contour С Green’s functions of the device Green’s functions of contacts mixed Green’s functions Indices a, b = ± marks the branches of Keldysh contour 45

46 Keldysh contour С

Calculation of the spectral functions 47 Effective interaction The components of the effective interaction

The matrix elements of the effective interaction are split in the indices of the root vectors 47 Graphic form of the system of equations for nonequilibrium device functions Зайцев Р.О., ЖЭТФ, 1975, 1976 Вальков В.В., Овчинников С.Г. Квазичастицы в сильно коррелированных системах, Новосибирск, 2001

P.I. Arseev, N.S. Maslova, Phys. Usp. 53, 1151 (2010) 52 I~t L 2 t R 2

The spectral function W σ +- has maxima at transition energies Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, eV=50 meV, t L =t R =t/10, t=-1 eV, T=1K. H=0 49

The influence of magnetic field on the spectral functions 50

The influence of magnetic field on the spectral functions 51

53 Electrical current В.В. Вальков, С.В. Аксенов, Е.А. Уланов, Письма в ЖЭТФ 98, 459 (2013);

Quantum kinetic equations for occupation numbers Main contribution in I αα is near ω=-E α, whereas the one for I αβ is out this ω region and I αα >> I αβ for tunnel regime ( Γ << E α, eV). Low temperatures limit, T<< E α, eV 55

Nonequilibrium occupation numbers of the system Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, μ B H=0, t L =t R =t/100, t=-1 eV, T= 1K. 56

The magnetic field influence on occupation numbers Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, μ B H=0.5meV, g=2, t L =t R =t/100, t=-1 eV, T= 1 K. 57

The magnetic field influence on occupation numbers Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, μ B H=2.5meV, g=2, t L =t R =t/100, t=-1 eV, T= 1 K. 58

5959 Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, μ B H=2.5meV, g=2, t L =t R =t/100, t=-1 eV, T= 1 K. IV characteristic has Coulomb-blockade-like behavior in tunnel regime,

Appearance of negative differential conductance (NDC) after changing D 60 Parameters: ξ d =A=5 meV, D=-3 meV, U=10 meV, μ B H=0, t L =t R =t/100, t=-1 eV, T= 1 K.

The explanation of NDC As Γ σ << | E α | If eV/2 > | E α |, If eV/2 < | E α |, Then, for eV/2 ~ | E α |, the I ββ, which were nonzero for lesser voltages, are decreasing because of reduction of the corresponding b β, whereas I αα is increasing. It’s explained by the total probability conservation law Consequently, NDC appears in region eV/2 ~ | E α | when 61 ~ ~

Asymmetric coupling with contacts Parameters: ξ d =A=5 meV, D=3 meV, U=10 meV, μ B H=2.5meV, g=2, t L =t/50, t R =t L /10, t=-1 eV, T= 1K. 62

Asymmetric coupling with contacts: S z total behavior 63

Asymmetric coupling with contacts Parameters: ξ d =A=5 meV, D=-3 meV, U=10 meV, μ B H=2.5meV, g=2, t L =t/25, t R =t L /4, t=-1 eV, T= 1K. 6464

Выводы Наличие в системе транспортируемый электрон+спиновая структура состояния непрерывного спектра и квазилокализованных состояний делает возможным эффект Фано (асимметричные пики в коэффициенте прохождения T ). Снятие вырождения по энергии триплетных состояний димера в магнитном поле приводит к появлению дополнительного асимметричного пика Фано в T. Этот эффект ответственен за реализацию гигантских значений магнитосопротивления системы. На основе неравновесных функций Грина и диаграммной техники Келдыша для фермиевских и хаббардовких операторов показано, что многочастичные эффекты приводят к существенно неравновесному распределению чисел заполнению и к значительной ренормировке ВАХ. При этом упрощаются условия реализации ОДП и гигантского магнитосопротивления 6565

Thank you for attention!