Production of Neutron Transmutation Doped Germanium Thermistors for CUORE Reina Maryama for the CUORE Collaboration University of Wisconsin, Madison APS.

Slides:



Advertisements
Similar presentations
Cuoricino results for 2 decay to the first excited state 0 + Sergio Di Domizio for the Cuoricino Collaboration Università and INFN Genova Athens, June.
Advertisements

Results from CUORICINO and Prospects for CUORE (Cryogenic Underground Observatory for Rare Events) S. Cebrián, on behalf of the CUORE Collaboration Università
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Surface Sensitive Bolometers (SSB): last development MARISA PEDRETTI INFN - Milano.
Stefano Pirro, IDEA Meeting –Milano November Status of the scintillating bolometer program Scintillating Bolometers Background rejection capabilities.
“Neutron activation analysis on slurry resulted from waste water conditioning” INSTITUTE FOR NUCLEAR RESEARCH PITESTI – ROMANIA INSTITUTE FOR NUCLEAR RESEARCH.
R. D. Foster, C. R. Gould, D. G. Haase, J. H. Kelley, D. M. Markoff, (North Carolina State University and TUNL), W. Tornow (Duke University and TUNL) Supported.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
Lawrence Livermore National Laboratory Using Nuclear Resonance Fluorescence to Isotopically Map Containers Micah S Johnson, D.P. McNabb This work performed.
Comments on Neutrinoless Double Beta Decay Experiments
Proposal for high sensitive measurements of 238 U and 232 Th with NAA Ezio Previtali INFN Sez. Milano Milano-Bicocca University ILIAS: JRA1 3rd General.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
LNGS Capelli Silvia on behalf of CUORE Collaboration
CUORE Cryogenic Underground Observatory for Rare Events
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
First neutrinoless double beta decay results from CUORE-0
Some fission yields for 235U (n,f), 239Pu (n,f), 238U (n,f) reactions in ΣΣ neutron spectrum Dr. Cristina Garlea National Institute for R&D of Physics.
Underground Crystal Growth Natural division TeO 2 growth Ge growth A. Giuliani / J. Morales  For Ge, cosmogenics is very critical  For Te, role of cosmogenics.
CUORE LNGS Review, November 2008Karsten Heeger, Univ. Wisconsin 1 Calibration Slides for the CUORE Review at LNGS.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
Stefano Pirro, IDEA Meeting Como April, Nd Project Why not 150 Nd experiments so far ? Bolometers requirements Nd crystals Time schedule Working.
Double beta decay search with TeO 2 bolometers Andrea Giuliani on behalf of the CUORE collaboration University of Insubria (Como) and INFN Milano-Bicocca.
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
Stefano Pirro, IDEA Meeting -Zaragoza November 7, Nd Project High Temperature Thermistors News about NdGaO 3 Scintillating Bolometers Conclusions.
Studies of neutron cross-sections by activation method in Nuclear Physics Institute Řež and in The Svedberg Laboratory Uppsala and experimental determination.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Underground Crystal Growth Marisa Pedretti. Participants INFN (ITALY) LNGS Como Milano-Bicocca Contractor Lawrence Berkeley National Laboratory University.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
The CUORE experiment Thomas Bloxham Lawrence Berkeley National Lab PHENO 2011 May 9th 2011.
NWG 4/11/03 Executive Summary R.N. Cahn, W.C. Carithers, S.J. Freedman, K.M. Heeger, R.W. Kadel, V. Koch, K.T. Lesko, Z. Ligeti (deputy), K-B. Luk, H.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
RESMDD02 July , Florence, A.Singovski, University of Minnesota1 Radiation hardness of the Avalanche Photodiodes for ECAL CMS detector at CERN.
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
Fusion Neutronics Activity at JAERI from October 2000 to September 2001 Peseted by Takeo NISHTANI IEA International Work Shop on Fusion Neutronics The.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
Trace element analysis of K, U and Th in high purity materials by Neutron Activation Analysis P. ILA Dept. of Earth Atmospheric & Planetary Sciences Massachusetts.
Results obtained with large mass surface sensitive detectors Zaragoza -November 7, 2005 University of Insubria - Como, Italy INFN - Milano, Italy.
Neutron Transmutation Doping Conceptual Design Dr. Mosa Othman Silicon doping facility manger Egyptian Second Research Raector (ETRR-2) Atomic Energy Authority.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
From CUORICINO to CUORE The bolometric way to double beta decay on behalf of the CUORE collaboration PANIC08 EILAT November 2008 Maria Martinez INFN Milano-Bicocca.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Neutron Transmutation Doped Germanium Thermistors for Cryogenic Detector Applications J. W. Beeman and E.E. Haller.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Three years of cross-section measurements of (n,xn) threshold reactions at TSL Uppsala and NPI Řež O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová,
Plans for Neutron Irradiations at RINSC
Cryogenic Particle Detectors in Rare event Searches
IBD Detection Efficiencies and Uncertainties
The CUORE experiment Marisa Pedretti INFN Milano Bicocca.
Pulse-shape discrimination with Cs2HfCl6 crystal
The search for neutrinoless double beta decay with Cuoricino and Cuore
Introduction to IDEA Outline Andrea Giuliani What is IDEA ?
From Cuoricino to CUORE: approaching the inverted hierarchy region
Scintillating Bolometers for Double Beta Decay
The Heidelberg Dark Matter Search Experiment
Serge Nagorny – GSSI-INFN
Cross-section Measurements of (n,xn) Threshold Reactions
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Measurements of the 238U radiative capture cross section using C6D6
MARE Microcalorimeter Arrays for a Rhenium Experiment
for the CUPID-0 collaboration
Integrated Double-beta-decay European Activity
Presentation transcript:

Production of Neutron Transmutation Doped Germanium Thermistors for CUORE Reina Maryama for the CUORE Collaboration University of Wisconsin, Madison APS Division of Nuclear Physics Fall Meeting October 2008, Oakland, CA

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 2 CUORE Array of 988 TeO 2 crystals  19 Cuoricino-like towers  4 crystals x 13 levels per tower  5x5x5 cm 3 (750 g each)  130 Te: 33.8% isotope abundance  741 kg TeO 2  204 kg 130 Te APS Neutrino Study 2004 CUORE Other talks: Adam Bryant, EC 3 Nick Scielzo, EC 5 Laura Kogler, HC 4 Karsten Heeger, MC 2 Goal background < 0.01 cnts/keV/kg/y Resolution = 5 keV 5 year sensitivity F 0  > 2.1 x10 26 y m ee < ~ 25 – 130 meV Goal background < 0.01 cnts/keV/kg/y Resolution = 5 keV 5 year sensitivity F 0  > 2.1 x10 26 y m ee < ~ 25 – 130 meV

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 3 For E = 1 MeV: ΔT = E/C  0.1 mK Signal size: 1 mV Time constant:  = C/G = 0.5 s Energy resolution (FWHM): ~ 5-10 keV at 2.5 MeV Heat sink: Cu structure (8 mK) Thermal coupling: Teflon (G = 4 pW/mK) Thermometer: NTD Ge-thermistor  100 M  dR/dT  100 k  K) Absorber: TeO 2 crystal (C  2 nJ/K  1 MeV / 0.1 mK) Heat sink: Cu structure (8 mK) Thermal coupling: Teflon (G = 4 pW/mK) Thermometer: NTD Ge-thermistor  100 M  dR/dT  100 k  K) Absorber: TeO 2 crystal (C  2 nJ/K  1 MeV / 0.1 mK) TeO 2 Bolometer: Source = Detector CUORE Bolometer Single pulse example Time (ms) Amplitude (a.u.)

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 4 NTD Ge Thermistors Neutron Transmutation Doped Ge Thermistors Developed at Berkeley by E.E. Haller (material science) Ge doped with Ga & As by neutron irradiation provides very uniform doping Few % variation in doping results in performance variation Reliable, reproducible, and stable Good energy resolution Neutron Transmutation Doped Ge Thermistors Developed at Berkeley by E.E. Haller (material science) Ge doped with Ga & As by neutron irradiation provides very uniform doping Few % variation in doping results in performance variation Reliable, reproducible, and stable Good energy resolution 4 Planned or operating in numerous sub-orbital experiments: BOOMERANGCaltechAntarctic balloon CMB instrument SuZIE Stanford S-Z instrument for the CSO MAXIMA UC Berkeley North American balloon CMB instrument BOLOCAM CIT/CU/CardiffBolometer camera for the CSO ACBAR UC Berkeley Antarctic S-Z survey instrument BICEP Caltech CMB polarimeter MAT UPenn CMB experiment for Chile POLATRON Caltech CMB polarimeter for OVRO Archeops CNRS, France CMB balloon experiment BLASTU. PennSubmillimeter balloon experiment Z-SPECCaltechmm-wave spectrometer QUESTStanfordCMB polarimeter PRONAOS IAS, France Submillimeter balloon experiment

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 5 Doping Process Acceptor 70 Ge (21%) + n → 71 Ge 71 Ge →  EC) 71 Ga Donor 74 Ge (36%) + n → 75 Ge 75 Ge → 75 As +  - Double Donor 76 Ge (7.4%) + n → 77 Ge 77 Ge → 77 As +  - 77 As → 77 Se +  - Resistance: mK, T0 = 3 K Nominal neutron dose: 4x10 18 n/cm 2 Nominal concentrations: Ge: 4.4 x cm -3 Ga: 1 x cm - 3 As: 3 x cm - 3 Se: 2 x cm - 3 Neutron source: reactors Production time: ~1 year for 2 Hz in 9 mm 3 chips (  T = 3.43 bn) (  T = 0.51 bn)(  T = 0.16 bn)

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 6 Challenges for CUORE Thermistors Temperature (mK) T -1/2 (K -1/2 ) Resistivity (Ohm-cm) q1q1  =  o exp (T o /T) 1/2 Reproduce CUORICINO doping ⇒ Need to obtain neutron fluence to within 1% ⇒ BUT fluence known only to ~ 5% 1250 thermistors necessary: ⇒ 1 thermistor/crystal + extras for monitoring + spares = 1250 Must meet the low background materials requirement ⇒ electrically active impurities in Ge: 5 x cm -3 (150 times less than in CUORICINO) ⇒ Use reactor with few fast neutrons to minimize activation of long- lived isotopes, e.g. 68 Ge, 65 Zn

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 7 MIT 4” port (4TH1-3) ‣ Dedicated facility for Silicon NTD ‣ Sufficient flux: fluence per pass: – cm -2 ‣ Sample rotated for uniform irradiation ‣ Sample speed adjusted by feedback with monitors ‣ Large ports to accommodate 65 mm wafers ‣ We have determined that:  MIT has 1/1000 fast neutrons than MURR  fluence per pass reliable to 3% Cons: ‣ Different neutron energy spectrum  may contribute to different Ga:As:Se ratio  Cold test necessary in any case CUORICINO used University of Missouri Research Reactor (MURR) CUORE: MIT Nuclear Reactor Laboratory was chosen:

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 8 Doping Procedure and Diagnostics Reach 1% accuracy by multiple passes  e.g. 3% accuracy of 10% of total dose -> 0.3% Irradiate four sets at different doses to cover uncertainty in absolute dose Three diagnostic tools  Cold test: measure T 0 and ρ 0 Ultimate test ~ 10 months of cool down required before count rate of decay to Ga is < 2 Hz for 3x3x1 mm 3 chips  Monitor foils fast check, compare with nominal CUORICINO sub-% relative measurement possible e.g. 59 Co(n,γ) 60 Co (T 1/2 = 5.3 yrs), 58 Fe(n,γ) 59 Fe (T 1/2 = 45 days), 94 Zr(n,γ) 95 Zr (T 1/2 = 64 days)  Neutron Activation Analysis (NAA) Direct comparison with CUORICINO thermistors by activating Ga & As quicker turn around than cold test 2.5% accuracy achieved (some interferences from neighboring lines & reactions)

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 9 Neutron Activation Analysis Reactions: Interference: Activated at McClellan, counted on-site & at LBL Dolinski, Smith, Norman (14 hrs) (1.1 day) (11.3 hrs)

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 10 Neutron Fluence Monitors Fe & Zr foils, standard pottery used 3 monitors replaced between each pass 1 monitor stay with wafers for all passes for cross check Monitors counted at LBL low background counting facility 7 passes at MIT indicates that they can aim for 3% run-to-run consistency Fe & Zr Standard Pottery

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 11 NTD Ge Wafers and Holders 65 mm

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 12 Neutron Fluence vs. Cold Test Cold tests done in Florence and Milan  absolute temperature calibration is different, but show good relative agreement 9 small sets irradiated earlier at Missouri  Monitors used to measure neutron fluence  Show some inconsistencies with cold test Old New CUORICINO 4 new sets for CUORE have been irradiated and cold tested. NAA in agreement. Unfortunately NTD-40 A/B are over- doped NTD-39 A/B top-off is underway (two different doses) Two more sets to start

Reina MaruyamaAPS DNP Oct , 2008, Oakland CA 13 CUORE Collaboration Laboratori Nazionali del Gran Sasso M. Balata, C. Bucci, S. Nisi Universita’ di Firenze e INFN, Firenze M. Barucci, L. Risegari, G. Ventura University of Zaragoza S. Cebrian, P. Gorla, I.G. Irastorza Universita’ dell’Insubria e Sezione di Milano dell’INFN, Como A. Giuliani, M. Pedretti, S. Sangiorgio Universita di Genova S. Cuneo, S. Didomizio, A. Giachero, M. Olcese, P. Ottonello, M. Pallavicini Laboratori Nazionali di Legnaro V. Palmieri Universita di Roma F. Bellini, C. Cosmelli, I. Dafinei, M. Diemoz, F. Ferroni, C. Gargiulo, E. Longo, S. Morganti, M. Vignati Universita’ di Milano-Bicocca - INFN Sezione di Milano F. Alessandria, R. Ardito 1, C. Arnaboldi, C. Brofferio, S. Capelli, L. Carbone, M. Clemenza, O. Cremonesi, E. Fiorini, C. Nones, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, L. Torres, L. Zanotti Politecnico de Milano G. Maier University of California at Berkeley A. Bryant, M.P. Decowski 2, M.J. Dolinski 3, E. Guardincerri, S.J. Freedman 2, L. Kogler, Yu.G. Kolomensky 2, E.E. Haller 2 ( 2 also at LBNL, 3 also at LLNL) University of South Carolina D.R. Artusa, F.T. Avignone III, I. Bandac, R. J. Creswick, H.A. Farach, C. Rosenfeld Lawrence Berkeley National Laboratory J.W. Beeman, R.W. Kadel, A.R. Smith, N. Xu Lawrence Livermore National Laboratory K. Kazkaz, E.B. Norman, N. Scielzo University of California, Los Angeles H. Huang, C. Whitten Jr. University of Wisconsin, Madison L.M. Ejzak, K.M. Heeger, R.H. Maruyama California Polytechnic State University T.D. Gutierrez 13