Engineering an Optimal Wind Farm Stjepan Mahulja EWEM Rotor Design : Aerodynamics s132545, 4312600 30th September 2015 SUPERVISORS: Gunner Chr. Larsen.

Slides:



Advertisements
Similar presentations
Intelligent Tools for Techno- Economic Modelling and Network Design Tim Glover Chris Voudouris Anthony Conway Edward Tsang Ali Rais Shaghaghi Michael Kampouridis.
Advertisements

Dialogue Policy Optimisation
Light Rotor: The 10-MW reference wind turbine
Electrical and Computer Engineering Mississippi State University
CFD Simulation: MEXICO Rotor Wake
Multi-Objective Optimization NP-Hard Conflicting objectives – Flow shop with both minimum makespan and tardiness objective – TSP problem with minimum distance,
Investigating the influence of farm layout on the energy production of simple wind park configurations Sercan Uysal Renewable Energy (MSc RENE) Master.
Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor Mac Gaunaa, Frederik Zahle, Niels N. Sørensen, Christian Bak, Pierre- Elouan.
Controller design for a wind farm, considering both power and load aspects Maryam Soleimanzadeh Controller design for a wind farm, considering both power.
Including Uncertainty Models for Surrogate-based Global Optimization
Frankfurt (Germany), 6-9 June 2011 Muhammad Ali, Jovica V. Milanović Muhammad Ali – United Kingdom – RIF Session 4 – 0528 Probabilistic Assessment Of Wind.
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
EStorage First Annual Workshop Arnhem, NL 30, Oct Olivier Teller.
1 Hybrid Agent-Based Modeling: Architectures,Analyses and Applications (Stage One) Li, Hailin.
Hybrid System Performance Evaluation Henrik Bindner, Tom Cronin, Per Lundsager, Oliver Gehrke Risø National Laboratory, Roskilde, Denmark.
Aspects of Relevance in Offshore Wind Farm Reliability Assessment Nicola Barberis Negra 2 nd PhD Seminar on Wind Energy in Europe Risø.
Wind Power Scheduling With External Battery. Pinhus Dashevsky Anuj Bansal.
Opportunity Engineering Harry Larsen The Boeing Company SCEA 2000 Conference.
Optimising the Layout of 1000 Turbines Markus Wagner Optimisation and Logistics.
AIAA SciTech 2015 Objective The objective of the present study is to model the turbulent air flow around a horizontal axis wind turbine using a modified.
Atmospheric Flow over Terrain using Hybrid RANS/LES European Wind Energy Conference & Exhibition 2007 A. Bechmann, N.N. Sørensen and J. Johansen Wind Energy.
CHAPTER 15 S IMULATION - B ASED O PTIMIZATION II : S TOCHASTIC G RADIENT AND S AMPLE P ATH M ETHODS Organization of chapter in ISSO –Introduction to gradient.
Wavelets Series Used to Solve Dynamic Optimization Problems Lizandro S. Santos, Argimiro R. Secchi, Evaristo. C. Biscaia Jr. Programa de Engenharia Química/COPPE,
IceWind project TFI Annual Conference September 2010 Niels-Erik Clausen Wind Energy Division, Risø DTU.
Performance modeling of a hybrid Diesel generator-Battery hybrid system Central University of Technology Energy Postgraduate Conference 2013.
Accuracy of calculation procedures for offshore wind turbine support structures Pauline de Valk – 27 th of August 2013.
Financial Statement Modeling & Spreadsheet Engineering “Training in spreadsheet modeling improves both the efficiency and effectiveness with which analysts.
1 Hybrid methods for solving large-scale parameter estimation problems Carlos A. Quintero 1 Miguel Argáez 1 Hector Klie 2 Leticia Velázquez 1 Mary Wheeler.
Modeling and simulation of systems Simulation optimization and example of its usage in flexible production system control.
Smart Rotor Control of Wind Turbines Using Trailing Edge Flaps Matthew A. Lackner and Gijs van Kuik January 6, 2009 Technical University of Delft University.
Department of Electrical Engineering, Southern Taiwan University Robotic Interaction Learning Lab 1 The optimization of the application of fuzzy ant colony.
Comparison of Differential Evolution and Genetic Algorithm in the Design of a 2MW Permanent Magnet Wind Generator A.D.Lilla, M.A.Khan, P.Barendse Department.
Integrated Dynamic Analysis of Floating Offshore Wind Turbines EWEC2007 Milan, Italy 7-10 May 2007 B. Skaare 1, T. D. Hanson 1, F.G. Nielsen 1, R. Yttervik.
Optimal Placement of Wind Turbines Using Genetic Algorithms
A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting Huang, C. L. & Tsai, C. Y. Expert Systems with Applications 2008.
Technische Universität München Wind Energy Institute Technische Universität München Wind Energy Institute Detection of Wake Impingement in Support of Wind.
UPWIND, Aerodynamics and aero-elasticity
Horizontal Axis Wind Turbine Systems: Optimization Using Genetic Algorithms J. Y. Grandidier, Valorem, 180 Rue du Marechal Leclerc, F B ´ Begles,
An Overview of the Technology and Economics of Offshore Wind Farms
Procedures for Wind resource assessment and their impact on the levelized cost of Energy (based on the MEGAVind cost model), Head of Section Hans E. Jørgensen,
How can collaboration be improved ? - can research collaboration facilitate growth for sub-suppliers? Kenneth Thomsen DTU Wind Energy Ane Holck DTU Innovation.
Evolving RBF Networks via GP for Estimating Fitness Values using Surrogate Models Ahmed Kattan Edgar Galvan.
Evan Gaertner University of Massachusetts, Amherst IGERT Seminar Series October 1st, 2015 Floating Offshore Wind Turbine Aerodynamics.
Multifidelity Optimization Using Asynchronous Parallel Pattern Search and Space Mapping Techniques Genetha Gray*, Joe Castro i, Patty Hough*, and Tony.
A Two-Phase Linear programming Approach for Redundancy Problems by Yi-Chih HSIEH Department of Industrial Management National Huwei Institute of Technology.
1 Development of a Numerical Optimisation Method for Blowing Glass Parison Shapes Hans Groot.
Aerodynamics and Wind Energy Profile 2: Wind Energy 23 March, 2016Wim Bierbooms.
The University of SydneySlide 1 Simulation Driven Biomedical Optimisation Andrian Sue AMME4981/9981 Week 5 Semester 1, 2016 Lecture 5.
A Hybrid Optimization Approach for Automated Parameter Estimation Problems Carlos A. Quintero 1 Miguel Argáez 1, Hector Klie 2, Leticia Velázquez 1 and.
H2020 Proposals LIFES 50 PLUS James Battensby – Technical Bid Manager 23 rd June 2015.
MECH 373 Instrumentation and Measurement
Wind technology: R&I perspective
Talents of tomorrow: Aerodynamics and aeroelasticity
Optimization of Windfarm Layout
Boosting and Additive Trees
Master Kick Off Aerodynamics & Wind Energy
A Framework for Automatic Resource and Accuracy Management in A Cloud Environment Smita Vijayakumar.
Closed Loop Wind Farm Control
5-beam Avent demonstrator
Fluid Dynamic Analysis of Wind Turbine Wakes
Stefano Grassi WindEurope Summit
The application of an atmospheric boundary layer to evaluate truck aerodynamics in CFD “A solution for a real-world engineering problem” Ir. Niek van.
Smita Vijayakumar Qian Zhu Gagan Agrawal
Multi-Objective Optimization
E. Dellwik, A. Papettaa, J. Arnqvist, M. Nielsena and T. J. Larsena
Exploring the limits in Individual Pitch Control S. Kanev and T
Project Title: (Your project title here)
Micrositing for Wind Turbines
Dr. Arslan Ornek MATHEMATICAL MODELS
Presentation transcript:

Engineering an Optimal Wind Farm Stjepan Mahulja EWEM Rotor Design : Aerodynamics s132545, th September 2015 SUPERVISORS: Gunner Chr. Larsen (DTU) Ali Elham (TU DELFT) COMMITTEE: Gerard J.W. Van Bussel (TU DELFT) Michiel Zaaijer (TU DELFT)

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” WFLO FRAMEWORK The thesis structure 2 Special project –Literature study –Exploration of the topic Thesis –WFLO using surrogate models SURROGATE MODELING OPTIMISATION PLATFORM COST MODEL WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Plan for today 1.Introduction –Wind farm planning –Wind Farm Layout Optimisation Problem -> How to engineer an optimal wind farm? Consequences of the wake field Design variables, objective function 2.Surrogate modeling –Introduction to surrogate modeling (+ SUMO) –Building a DWM surrogate model 3.Wind Farm Layout Optimisation –Design variables -> optimisation strategies –Example: Middelgrunden 4.Conclusions 3 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” How to plan a wind farm? 4 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Wind Farm PERFORMANCE COSTS Availability or accessibility Component degradation Wind conditions Turbulence characteristics Mean wind speed distribution Wind direction distribution Loads Structure 5 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Wind Farm Layout Optimisation Problem (WFLOP) “determining locations of where the turbines should be placed in order to maximize the financial value of the wind farm” Investment Positive cash flow -> Electricity Negative cash flow -> O&M Financial Balance 6 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” InvestmentPower outputLifetime equivalent loading Turbines + foundationEstimate for AEPFatigue driven degradation of components Cable gridPrice of electricityO&M costs SIMULATIONS SHORTHEST DISTANCE ALGORITHM COST MODEL - design - analysis -grade OPTIMISATION strategy (module) remains... 7 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” SIMULATIONS SHORTHEST DISTANCE ALGORITHM COST MODEL OPTIMISATION -AEROELASTIC SIMULATIONS OF EACH WT IN THE FARM -SHORTEST CABLING LAYOUT -TRANSLATES AEP, LOADS AND CABLE LENGTH TO MONETARY UNITS (WEIGHTING) - DETERMINES HOW THE TURBINES WILL BE SHIFTED TRADITIONAL APPROACH WIND FARM LAYOUT 8 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” SIMULATIONS: Dynamic Wake Meandering model In-stationary wind field (as seen from 1 turbine) Part of HAWC2 Simulation of 30min (takes approx. 30min of real time) –For each wind speed (4..25 m/s -> 22) –For each wind direction (0..330° -> 12) –eg. 50 turbines -> 50 x 22 x 12 = simulations each layout parallel computing (550 CPUs) -> 24runs x 30min = 12h each func. eval –Genetic optimization – O(1000) func. eval. –Gradient based optimization - O(100) func. eval h = 550 days !!! Optimistic estimate SURROGATE MODEL Need for a 9 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” SHORTHEST DISTANCE ALGORITHM COST MODEL OPTIMISATION MODIFIED APPROACH SURROGATE MODEL 10 SURROGATE MODELING LAYOUT OPTIMISATION … WIND FARM LAYOUT WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 11 WT SURROGATE MODEL SpacAng sec15D0°0° sec23D30° sec3∞- …….. sect12∞- IN OUT Farm level Turbine level Sector level COST MODEL OPTIMISATION SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” OPTIMISATION: Multi-fidelity strategy GENETIC SEARCH GRADIENT BASED OPTIMISATION on a coarse grid in a continuous domain -Implicitly finds the optimal number of turbines -Primarily deals with balancing the costs -Wake effects are optimised on coarse grid size with accuraccy of 2D -Turbine count is constant -Hardly any effect to the investment -Depends of the initial solution -Minimises the wake effect 12 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Surrogate modeling What is a surrogate model? How to build a surrogate? In application to WFLO, what is needed? 13 SURROGATE MODELING LAYOUT OPTIMISATION … WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” - Substitution of the true response of some computationally expensive or technically demanding system Needs to be cheap to build and cheap to use Good enough 14 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” - Approximation based on known function values Locations of sampling points are chosen 15 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” How is it done? SEQUENTIAL MODELING -Initial samples –Fit a model –Measure the model –Exploit the model / Explore the domain –New samples Fit a model Measure the model Exploit the model / Explore the domain New samples CONVERGENCE 2. PARALLEL COMPUTING 1. EXPERIMENTAL SET-UP 3. COORDINATION 16 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 17 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” results 3 inputs 7 outputs 1051 sampling points (+ 421 for validation) Accuracy of 5% (MRE) RBF gives best results 18 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … … Coarse ”one-shot” surrogate -> study -> Sequential design surrogate

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Layout optimisation in practice Middelgrunden Wind Farm –ORIGINAL: 20x2MW -> SCALED: 20x5MW 19 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 20 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … … CONVEXITY 2 ND STAGE -53 TURBINES -AEP INCREASE BY 150% -NPV INCREASE BY 100% WAKE LOSS INCREASES, BUT EVENS OUT 1 ST STAGE -CAPACITY FACTOR IS INCREASED BY 4%, BUT TOTALLY REDUCED BY 2% -NPV INCREASES BY 134%

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 21 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” OPTIMAL design 22 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 23 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Conclusions Framework makes sense –Surrrogate models are necessary –Multi-fidelity optimisation is prefered Surrogate requires tune-up Financial aspects fo a wind farm need to be taken into account (weighting!) 24 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Thank you 25

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” COST MODEL: Objective function Has to consider all parameters describing the wind farm (performance + costs) DVs: –Number of turbines –Turbine positions LCoE (not considering market conditions) -> may not be optimal in from economic POV NPV 26 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” SHORTHEST DISTANCE ALGORITHM: Cable grid design Cable accounts for approx. 5% of the total cost Prim’s and Kruskal’s algorithms function written in MATLAB run on layout at the end of each iteration (not considered as DV) -> part of COST MODEL 27 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Turbine mapping in the genetic algorithm 28 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 3. In a form of regression/interpolation 29 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Sequential modeling 30 LAYOUT OPTIMISATION … SURROGATE MODELING WFLO … … SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” RBF Rational Kriging RBF Rational Kriging Quality Domain Surrogate model types: HETEROGENETIC 31 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 32 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” Optimisation 33 WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … WFLO SURROGATE MODELING LAYOUT OPTIMISATION … … … …

DTU Wind Energy, Technical University of Denmark Add Presentation Title in Footer via ”Insert”; ”Header & Footer” 34