Extension to the Link Management Protocol (LMP/DWDM - rfc4209) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems draft-dharinigert-ccamp-g-698-2-lmp-02.txt.

Slides:



Advertisements
Similar presentations
Page th IETF – San Francisco, CA, March 2009 Information Model for Impaired Optical Path Validation Greg Grotto.
Advertisements

A Framework for Management and Control of Optical Interfaces supporting G draft-kunze-g management-control-framework-00 Ruediger Kunze Manuel.
Some Recent Topics in Physical-Layer System Standards Felix Kapron Standards Engineering Felix Kapron Standards Engineering.
LMP G parameters draft-dharinigert-ccamp-g lmp-09.txt Gabriele Galimberti Cisco Systems Zafar Ali Cisco Systems Ruediger KunzeDeutsche Telekom.
Compatibility of multivendor Dense Wavelength Division Multiplexing System Master Thesis Jan Waldén, Helsinki Supervisor PhD Timo Korhonen.
Fiber-Optic Communications
Page th IETF – Vancouver, December 2007 Framework for GMPLS and PCE Control of Wavelength Switched Optical Networks (WSON) & RWA Information for.
Metrocore/Vesper Field Trial Pisa (Italy) Marconi PMA32 Metropolitan fiber optic ring located in the town of Pisa (Italy) Links based on G.652 fiber, 22.
Page th IETF – Orlando, FL, March 2013 Information Model for Impaired Optical Path Validation Greg BernsteinGrotto Networking Young Lee Huawei Xian.
Extension to the Link Management Protocol (LMP/DWDM - rfc4209) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems draft-dharinigert-ccamp-g lmp-05.txt.
Draft-dharinigert-ccamp-g lmp-00  Dharini Hiremagalur; Ruediger Kunze; Gert Grammel; Gabriele Galimberti; Manuel Paul; John Drake.
Information Model for Wavelength Switched Optical Networks (WSON) with Optical Impairments Validation. draft-martinelli-ccamp-wson-iv-info-01 Giovanni.
Signaling & Routing Extension for Links with Variable Discrete Bandwidth draft-long-ccamp-rsvp-te-availability-03 draft-long-ccamp-ospf-availability-extension-02.
CCAMP WG, IETF 76th, Hiroshima, Japan draft-zhang-ccamp-gmpls-g709-framework-00.txt Fatai Zhang Dan Li Jianrui.
Poznan Supercomputing and Networking Center
A Framework for Management and Control of Optical Interfaces supporting G draft-kunze-g management-control-framework-02 March rd IETF.
Performance Monitoring in Photonic Networks John Drake Chromisys.
Dense Wavelength Division Multiplexing (DWDM) Technology
Framework for Black Link Management and Control draft-kunze-black-link-management-framework-00 Ruediger KunzeDeutsche Telekom March th IETF Prague1.
SNMP MIBs to manage G parameters for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems draft-galikunze-ccamp-g snmp-mib-06.txt.
1 Framework for GMPLS based control of Flexi-grid DWDM networks draft-ogrcetal-ccamp-flexi-grid-fwk-02 CCAMP WG, IETF 86 Oscar González de Dios, Telefónica.
Page th IETF – San Francisco, CA, March 2009 A Framework for the Control and Measurement of Wavelength Switched Optical Networks (WSON) with Impairments.
Models to manage G parameters 1.draft-galikunze-ccamp-g snmp-mib-09.txt 2.draft-dharinigert-ccamp-g lmp-08.txt 3.draft-dharini-netmod-g yang-01.txt.
Models to manage G parameters draft-galikunze-ccamp-g snmp-mib-11.txt Gabriele Galimberti Cisco Systems Ruediger KunzeDeutsche Telekom Lam,
OSPF-TE Extensions for Flex-grid Abinder Dhillon Iftekhar Hussain
Page th IETF – Vancouver, December 2007 Signaling Extensions for Wavelength Switched Optical Networks Greg
Page 1 RSVP-TE based evidence signaling protocol Zafar Ali, Roberto Cassata (Cisco Systems) Marco Anisetti, Valerio Bellandi, Ernesto Damiani, Francesco.
Framework for G.709 Optical Transport Network (OTN) draft-ietf-ccamp-gmpls-g709-framework-05 CCAMP WG, IETF 82 nd Taipei.
Page rd IETF – Minneapolis, MN, November 2008 Information Model for Impaired Optical Path Validation Greg Grotto.
2015/12/261 Lambda Labels Lambda Labels draft-otani-ccamp-gmpls-lambda-labels-01 Tomohiro Otani (KDDI R&D Labs) Hongxiang Guo (KDDI R&D Labs) Keiji Miyazaki.
June 4, 2003Carleton University & EIONGMPLS - 1 GMPLS Generalized Multiprotocol Label Switching Vijay Mahendran Sumita Ponnuchamy Christy Gnanapragasam.
Models to manage G parameters draft-dharini-netmod-g yang-03.txt Gabriele Galimberti Cisco Systems Ruediger KunzeDeutsche Telekom Lam, Hing-Kam.
1 Ping and Traceroute for GMPLS LSPs in Non-Packet Switched Networks draft-ali-ccamp-gmpls-lsp-ping-traceroute-01.txt Zafar Ali, Roberto Cassata (Cisco.
SNMP MIBs to manage G parameters draft-galikunze-ccamp-g snmp-mib-00.txt Former draft-galimbe-kunze-g snmp-mib-02.txt Gabriele Galimberti.
Extension to the Link Management Protocol (LMP/DWDM - rfc4209) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems draft-dharinigert-ccamp-g lmp-07.txt.
SNMP MIBs to manage Black Links networks draft-galimbe-kunze-black-link-mib-00.txt Gabriele Galimberti Cisco Ruediger KunzeDeutsche Telekom March 2011.
1 73th IETF, CCAMP WG, Minneapolis, MN, USA November 2008 RSVP-TE based Impairments Collection Mechanism Zafar Ali, Roberto Cassata (Cisco Systems) Marco.
OSPF Traffic Engineering (TE) Express Path Updates draft-giacalone-ospf-te-express-path-01.txt Spencer Giacalone, Alia Atlas, John Drake, Stefano Previdi,
67th IETF San Diego November 2006 Routing Extensions to Support Network Elements with Switching Constraint Wataru Imajuku:
IETF Note Well Any submission to the IETF intended by the Contributor.
GSMPv3 Packet Capable Switch Support 56th IETF GSMP WG, San Francisco Kenneth Sundell
A YANG model to manage the optical optical parameters for in a WDM network draft-galimbe-ccamp-iv-yang-00 Ruediger KunzeDeutsche Telekom Gabriele Galimberti.
Framework for DWDM interface Management and Control draft-kdkgall-ccamp-dwdm-if-mng-ctrl-fwk-01 Ruediger KunzeDeutsche Telekom Gabriele Galimberti Cisco.
Models to manage DWDM interface parameters draft-galikunze-ccamp-dwdm-if-snmp-mib-00.txt Gabriele Galimberti Cisco Systems Ruediger KunzeDeutsche Telekom.
Problem Statement Controlling pre-standard coherent Optical Interfaces
Giovanni Martinelli, Cisco (*) Gabriele Galimberti, Cisco
SNMP MIBs to manage G parameters
draft-dharinigert-ccamp-g lmp-10
Author list: Rakesh Gandhi Zafar Ali
SNMP MIBs to manage G parameters
draft-dharini-ccamp-dwdm-if-param-yang-00
OSPF Enhancement for Signal and Network Element Compatibility for Wavelength Switched Optical Networks
GMPLS OSPF-TE Extensions in support of Flexible-Grid in DWDM Networks
Guard Bands requirements for GMPLS controlled optical networks
draft-dharinigert-ccamp-dwdm-if-lmp-06
Iftekhar Hussain (Presenter),
INTRODUCTION TO DWDM 19-Nov-18 ALTTC/TX-I/DWDM.
UNIT I – FRAME RELAY AND ISDN
Framework for DWDM interface Management and Control
A YANG model to manage the optical interface parameters for an external transponder in a WDM network draft-dharini-ccamp-dwdm-if-param-yang-01
Framework for DWDM interface Management and Control
draft-ggalimbe-ccamp-flexigrid-carrier-label-02
YANG data model for Flexi-Grid Optical Networks
Optical communications & networking - an Overview
Y. Lee, D. Dhody, X. Zhang, A. Guo (Huawei)
draft-dharinigert-ccamp-dwdm-if-lmp-07
YANG data model for Flexi-Grid Optical Networks
Context and scope In a disaggregated environment when two different entities are in charge of managing optical terminals (OT) and open line systems (OLS)
TAPI Photonic Media Model
draft-ggalimbe-ccamp-flex-if-lmp-07
Presentation transcript:

Extension to the Link Management Protocol (LMP/DWDM - rfc4209) for Dense Wavelength Division Multiplexing (DWDM) Optical Line Systems draft-dharinigert-ccamp-g lmp-02.txt Dharini Hiremagalur Juniper Networks Gert Grammel Juniper Networks John E. Drake Juniper Networks Gabriele Galimberti Cisco Systems Zafar Ali Cisco Systems Ruediger KunzeDeutsche Telekom March 2013 IETF 86 - Orlando1

Motivation & Problem statement Motivation 1.RFC4209 extension to cover the parameters as defined in G draft-dharinigert-ccamp-g lmp extensions are in alignment with draft- galikunze-ccamp-g snmp-mibdraft-dharinigert-ccamp-g lmpdraft- galikunze-ccamp-g snmp-mib The need of this work has been highlighted during the discussion at IETF-83, IETF-84 and IETF-85 Problem Statement 1.Correlate and check Link properties of both ends of a link and notify inconsistency. 2.Extending Link Property correlation for G based links 3.Extend RFC4209 covering Application Codes March 2013IETF 86 - Orlando

About LMP RFC4204 (LMP) and RFC4209 (LMP-WDM) “For scalability purposes, multiple data links can be combined to form a single traffic engineering (TE) link. Furthermore, the management of TE links is not restricted to in-band messaging, but instead can be done using out-of-band techniques. This document specifies a link management protocol (LMP) that runs between a pair of nodes and is used to manage TE links.” Currently addressing Transponder based links only Needs extension for wavelength, optical impairments and transceiver characteristics according to G and G NON-GOAL: LMP is neither a signaling nor a routing protocol 3March 2013IETF 86 - Orlando

RFC 4209 Extended LMP Model Ss Rs | | | | | | | | | OXC1 | | OLS1 | ===== | OLS2 | | OXC2 | | | | | | | | | ^ ^ ^ ^ ^ ^ | | | | | | | LMP LMP | | | LMP OXC : is an entity that contains transponders OLS : generic optical system, it can be - Optical mux, Optical demux, Optical Add Drop Mux, etc OLS1 to OLS2 : represents the black-Link itself Rs/Ss : between the OXC1 and the OXC2 March 2013IETF 86 - Orlando

Packet/Optical Networking – An example for an architecture MPLS Router LMP 3 ITU-T G NE Optical NMS SNMP March 2013IETF 86 - Orlando

G LMP 1. Goal: LMP correlates the link properties east and west of G reference points (Rs / Ss): – Ensure that both ends match before wavelength is lit-up 2. How it works for standard application codes: – When connected, Router and Optical Line System perform discovery procedures and exchange Application codes and BL messages. March 2013IETF 86 - Orlando

Extended RFC4209 LMP Messages for G (1) The general parameters - BL_General These are the general parameters as described in [G698.2] 1. Bit-Rate/line coding of optical tributary signals 2. Wavelength - (Tera Hertz) 4 bytes (see RFC6205 sec.3.2 and 3.3 TLV): Grid / Cannel Spacing / Identifier / n 3. Min Wavelength Range - (Tera Hertz) 4 bytes (see RFC6205 sec.3.2 and 3.3 TLV): Grid/Cannel Spacing/Identifier/n 4. Max Wavelength Range - (Tera Hertz) 4 bytes (see RFC6205 sec.3.2 and 3.3 TLV): Grid/Cannel Spacing/Identifier/n 5. BER mantissa - 4 bytes 6. BER exponent - 4 bytes 7. FEC Coding - 1 byte 8. Administrative state - 1 byte 9. Operation state - 1 byte Black Link ApplicationCode - BL_ApplicationCode 1. Single-channel application codes bytes (from [G698.1]/[G698.2]/[G959.1] 2. Vendor Transceiver Class bytes March 2013IETF 86 - Orlando7

Extended RFC4209 LMP Messages for G (2) Black Link - BL_Ss These are the G parameters at the Source(Ss reference points 1. Minimum Mean Channel Output Power -(0.1 dbm) 4 bytes 2. Maximum Mean Channel Output Power -(0.1 dbm) 4 bytes 3. Minimum Central Frequency - (THz) 4 bytes (see RFC6205 sec.3.2 and 3.3 TLV): Grid / Cannel Spacing / Identifier / n 4. Maximum Central Frequency - (THz) 4 bytes (see RFC6205 sec.3.2 and 3.3 TLV): Grid / Cannel Spacing / Identifier / n 5. Maximum Spectral Excursion - (0.1 GHz) 4 bytes 6. Maximum Tx Dispersion OSNR Penalty - (0.1 dbm) 4 bytes 7. Current Output Power - (0.1dbm) 4 bytes 8. Status of TX - Status of the Transmit link at OXC - 4 bytes Black Link - BL_SsRs These are the G parameters for the path (Ss-Rs) 1 Minimum Chromatic Dispersion - (ps/nm) 4 bytes 2. Maximum Chromatic Dispersion -(ps/nm) 4 bytes 3. Minimum Src Optical ReturnLoss -(0.1 db) 4 bytes 4. Maximum Discrete Reflectance Src To Sink - (0.1 db) 4 bytes 5. Maximum Differential Group Delay - (ps) 4 bytes 6. Maximum Polarisation Dependent Loss - (0.1 db) 4 bytes 7. Maximum Inter Channel Crosstalk - (0.1 db) 4 bytes 8. Interferometric Crosstalk - (0.1 db) 4 bytes 9. Optical Path OSNR Penalty - (0.1 db) 4 bytes 10. Fiber type - 1 byte March 2013IETF 86 - Orlando8

Extended RFC4209 LMP Messages for G (3) Black Link - BL_Rs These are the G parameters at the Sink (Rs reference points). 1. Minimum Mean Input Power - (0.1dbm) 4bytes 2. Maximum Mean Input Power - (0.1dbm) 4bytes 3. Minimum OSNR - (0.1dB) 4bytes 4. OSNR Tolerance - (0.1dB) 4bytes 5. Current Input Power at the OXC - (0.1dbm) 4bytes 6. Threshold of the input power at OLS - The power level above which the OLS will not function (0.1dbm) 4bytes 7. Current Optical OSNR (0.1dB) 8 Q factor 9. Post FEC BER Mantissa 10. Post FEC BER Exponent 11. Status of RX - Status of the Receive link at OXC - 2bytes Black Link - OLS_Status This message is sent by the OLS to the OXC. It includes the wavelength information and the status of the 1. Wavelength - The wavelength which has been accepted by the OLS (Tera Hertz) 4 bytes. (see RFC6205 sec.3.2 and 3.3 TLV): Grid / Cannel Spacing / Identifier / n 2. Length of the Wavelength Availability Map 1 byte 3. Wavelength Availability bits - variable bits depending on the number of wavelengths available (For eg 96 bits for C-band 50GHz) (Allocation is in multiples of 1byte - 96 bits - 12 bytes) 0 - wavelength is available, 1 - used - variable length 4. Current Input Power (0.1dbm) 4 bytes - This is the current input power at OLS 5. Delta between output power at the Src(OXC)and Input Power at OLS (0.1dbm) 4 bytes - This is the delta between the input power and the transmitted output power at the OXC (from message 2.2 BL_Src) 6. Threshold of the input power at OLS 4 bytes - This is the power level above which the OLS will not function. 7. Current Output Power (0.1dbm) 4 bytes - This is the transmitted output power at the OLS. 8. Status of Rx link at OLS 2 bytes - Status of the Receive link at the OLS 9. Status of Tx link at OLS 2 bytes - Status of the Transmit link at the OLS March 2013IETF 86 - Orlando9

Draft Changes and Next Steps Changes 1.Updated revision draft-dharinigert-ccamp-g lmp-02.txt 2.Modified: Kept alignment with draft-galikunze-ccamp-g snmp-mib-02.txt Modified Frequency and Wavelength as per RFC6205 sec.3.2 and 3.3 TLV): Grid / Cannel Spacing / Identifier / n Cosmetic changes Next Steps 1.Get ccamp consensus to go for WG status 2.Keep alignment with draft-galikunze-ccamp-g snmp-mib-02.txt 3.Cover the parameter set of G March IETF 86 - Orlando

Questions Does the draft cover all the G parameters? Can Q6 provide guidance on which parameters is work ongoing: 10G, 40G, 100G, 400G, 1T? What are the provisions in the information model to deal with Transceivers that meet a set of application codes in future? E.g. A standard receiver and a high- sensitivity-receiver that can operate under the same conditions but also in an extended range? 11March 2013IETF 86 - Orlando