Max-Planck-Institut für Plasmaphysik CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna26-28 September 2005 Compilation and Extension.

Slides:



Advertisements
Similar presentations
New Contributions to A+M Databases for Plasma Modeling R.K. Janev Macedonian Academy of Sciences and Arts, Skopje, Macedonia IAEA RCM on A+M data for plasma.
Advertisements

Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
“Rotational Energy Transfer in o - / p -H 2 + HD” Renat A. Sultanov and Dennis Guster BCRL, St. Cloud State University St. Cloud, MN June 20, 2007 OSU.
Collisional-Radiative Modeling of EBIT Spectra of High-Z Ions Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD ADAS.
Dipartimento di Chimica, Università di Bari, Italy
Cohen & Fano (CF) Model CF-I: Monoelectronic Process CF-II: LCAO for the bound molecular state CF-III: Free Wave for the ejected electron H H Interferences.
R-matrix calculations of electron-molecule collisions at low & intermediate energy Jonathan Tennyson Department of Physics and Astronomy University College.
Lecture 6 nitrogen and ozone photochemistry Regions of Light Absorption of Solar Radiation.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
Chapter 8 – Continuous Absorption
PIII for Hydrogen Storage
Molecular Bonding Molecular Schrödinger equation
OPTICAL ABSORPTION.
ChE 553 Lecture 25 Theory Of Activation Barriers 1.
Molecular Luminescence Spectrometry Chap 15. Three Related Optical Methods Fluorescence Phosphorescence Chemiluminescence } From excitation through absorption.
Prof. Reinisch, EEAS / Simple Collision Parameters (1) There are many different types of collisions taking place in a gas. They can be grouped.
Potential Energy Surfaces
Simulation of X-ray Absorption Near Edge Spectroscopy (XANES) of Molecules Luke Campbell Shaul Mukamel Daniel Healion Rajan Pandey.
Molecular Luminescence
METO 637 LESSON 3. Photochemical Change A quantum of radiative energy is called a photon, and is given the symbol h Hence in a chemical equation we.
Photochemistry Lecture 1 Electronic excitation of atoms and molecules.
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
Lecture 2: Physical Processes In Astrophysical and Laboratory Plasmas Lecture 1: Temperature-Density regime Many physical processes Focus on Atomic+Plasma.
Lecture 4 Intramolecular energy transfer
Stellar Atmospheres: Non-LTE Rate Equations 1 The non-LTE Rate Equations Statistical equations.
Vibrational Spectroscopy
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Progress in measurements of dissociative recombination CRP on Atomic and Molecular Data for Plasma Modelling Mats Larsson Department of Physics Stockholm.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
1 Li Xiao and Lichang Wang Department of Chemistry & Biochemistry Southern Illinois University Carbondale The Structure Effect of Pt Clusters on the Vibrational.
SCATTERING OF RADIATION Scattering depends completely on properties of incident radiation field, e.g intensity, frequency distribution (thermal emission.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
Department of Experimental Physics, Comenius University Bratislava, Slovakia Formation of positive ions by electron impact: Temperature effects Š. Matejčík.
Plasma diagnostics using spectroscopic techniques
States and transitions
Internal partition function calculated with where N is the particle density (cm 3 ) Influence of Electronically Excited States on Thermodynamic Properties.
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
Plasma Physics & Engineering Lecture 7. Electronically Excited Molecules, Metastable Molecules. Properties of excited molecules & their contribution into.
Data Needs for Simulations of Electron-driven Processes in Planetary and Cometary Atmospheres by Laurence Campbell & Michael J. Brunger School of Chemical.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
VUV-diagnostics of inelastic collision processes in low temperature hydrogen plasmas J. Komppula & JYFL ion source group University of Jyväskylä Department.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 6 (2/5/2014) Slide Introduction to Quantum Optics &
MODULE 26 (701) RADIATIONLESS DEACTIVATION OF EXCITED STATES We have used terms such as "internal conversion" and "intersystem crossing" without thinking.
Chapter 8 – Continuous Absorption Physical Processes Definitions Sources of Opacity –Hydrogen bf and ff –H - –He –Scattering.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Beam Species Measurements on the MAST NBI system Brendan Crowley Thanks to.
1 Max-Planck-Institut für Plasmaphysik Cadarache 2012 K. Behringer A few comments on Opacity Calculations Using ADAS214 Cadarache, Sept K. Behringer.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Electron-impact rotational excitation of H 3 + : relevance for thermalization and dissociation Alexandre Faure* Laurent Wiesenfeld* & Jonathan Tennyson.
Mechanisms of enzyme inhibition Competitive inhibition: the inhibitor (I) binds only to the active site. EI ↔ E + I Non-competitive inhibition: binds to.
Collisional-Radiative Model For Atomic Hydrogen Plasma L. D. Pietanza, G. Colonna, M. Capitelli Department of Chemistry, University of Bari, Italy IMIP-CNR,
Fluorescence spectroscopy, Einstein’s coefficients Consider a molecule with two energy levels S a and S b The rate of transition.
Electron-molecule collisions in harsh astronomical environments Alexandre Faure 1 & Jonathan Tennyson 2 1 Université de Grenoble / CNRS, France 2 University.
Lecture 8. Chemical Bonding
An analytical potential for the for the a 3  + state of KLi, (derived from observations of the upper vibrational levels only) Houssam Salami, Amanda Ross,
Özkan ŞAHİN & Tadeusz KOWALSKI Uludağ University, Physics Department, Bursa – TURKEY Faculty of Physics and Applied Computer Science, AGH University of.
Reversibility of intersystem crossing in the ã 1 A 1 (000) and ã 1 A 1 (010) states of methylene, CH 2 ANH T. LE, TREVOR SEARS a, GREGORY HALL Department.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
Development of CR Model for OES in Hydrogen Plasma
Lecture 4 Intramolecular energy transfer
Curtin University, Perth, Australia
ENERGY TRANSFER IN HBr + HBr AND HBr + He COLLISIONS
New Collision Data for H/H2 and CxHy Databases
IMIP-CNR, sezione di Bari, Italy
Calculated molecular data for fusion plasmas
R-matrix calculations of electron molecule collisions
Feasibility Study of the Polarized 6Li ion Source
Ion-Atom Collisions Electron capture reactions in N2+, O2+ + H
Presentation transcript:

Max-Planck-Institut für Plasmaphysik CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna26-28 September 2005 Compilation and Extension of a Database for Systematic Studies on Diatomic Molecules Ursel Fantz and Dirk Wünderlich  Franck-Condon factors, transition probabilities  Vibrational population  Collisional radiative and dissociation modelling  Rate coefficients TraDiMo Yacora IPProg Examples for molecular hydrogen and hydrocarbons Future applications to CH, BH, BeH and its hydrogen isotopomeres, C 2

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Transitions of Diatomic Molecules: TraDiMo TraDiMo bound-bound and bound-free transitions TraDiMo bound-bound and bound-free transitions Vibrational energies Franck-Condon factors Transition probabilities Isotope relations Potential curves Based on Schrödinger equation with Born-Oppenheimer approximation Dipole moment Effective mass + Compilation of data Basic molecular data vibrational resolution H 2, D 2, T 2 HD, DT HT Already available U. Fantz, D. Wünderlich INDC(NDS)-457 (2004)

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for molecular hydrogen Energy level diagram and potential curves repulsive double well plotted n=1,2,3, data up to n=4 v=0 metastable data compilation polynomial fits data compilation polynomial fits

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for molecular hydrogen Vibrational levels in double minima curves: GK 1  g + H 2 : v = 2  GK2 Isotope effect D 2 : v = 2  K1

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for molecular hydrogen Franck-Condon factors: X 1  g + → d 3  u v v‘

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for molecular hydrogen Transition probabilities: d 3  u → a 3  g + v‘‘ v‘

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for molecular hydrogen Transition probabilities for bound to free transitions: a 3  g + → b 3  u + Isotope shifts Continuum radiation

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Vibrational population in excited states of hydrogen Singlet system B 1  u + Triplet system d 3  u but also cascading, predissociation, quenching and … Projection of n 0 v via Franck Condon matrix versus excitation and de-excitation ground state population T vib (X)

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for C 2, CH, BH, BeH, … Potential curves and Franck-Condon factors: C 2 X 1  g + - D 1  u + a 3  u - d 3  g

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for C 2, CH, BH, BeH, … Potential curves: CH and BH Polynomial fits CH BH

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for C 2, CH, BH, BeH, … Franck-Condon factors: X 2  - A 2  Isotope shifts CH CD CT

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 TraDiMo for C 2, CH, BH, BeH, … Transition probabilities: X 2  - A 2  CH CH:  = 540 ns measured value A ik = 1.85  10 6 s -1

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora: a flexible code for calculating particle densities Self-consistent solution of coupled systems of linear and non-linear differential equations Collisional radiative modelling Population densities of excited states Dissociation modelling Particle densities of radicals + Coupled system Particle and population densities = Example: molecular hydrogen Flexible code  Easy to extend for new processes  Simple change of input data  Based on cross sections (EEDF) Electron collisions + heavy particle collisions + radiation Electron collisions + heavy particle collisions + radiation

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrogen: collisional radiative modelling Vibrational resolution in ground state and electronically excited states Extension of data base  Gryzinski method optically forbidden transitions  Impact parameter method optically allowed transitions  Additional processes predissociation autoionisation, quenching, ….

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrogen: collisional radiative modelling Electronically excited states: triplet system n=3: electronically resolved Differences in dependence on n e Calculations of individual levels required d 3  u : vibrationally resolved (change in data base)

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrogen: collisional radiative modelling Projection of n 0 v via q vv’ and A ik versus collisional radiative modelling vib. resolved excitation and de-excitation Triplet system d 3  u Singlet system B 1  u + CR modelling is essential ground state population T vib (X)

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for C 2, CH, BH, … : collisional radiative modelling Compilation of energy level diagrams and potential curves CH A. Kalemos, A. Mavridis, A. Metropoulos J. Chem. Phys. 111 (1990) 9536 C2C2 C2C2 B.M. Smirnov, A.S. Yatsenko Physics-Uspekhi 39 (1996) 2116 U, 10 4 cm -1 U, eV Electronic states and optically allowed transitions

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for C 2, CH, BH, … : collisional radiative modelling Compilation of rate coefficients: CH IPProg A Burgess, H P Summers, IPProg code, Mon. Not. R. Astr. Soc. 174 (1976) 345 Validation and isotope investigations and measurements in laboratory plasmas Discrepancies between data sources

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for C 2, CH, BH, … : collisional radiative modelling IPProg for CH, C 2 IPProg for CH, BH Optically allowed transitions  Excitation energy  Statistical weights  Transition probability

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for C 2, CH, BH, … : collisional radiative modelling Dissociative excitation for CH, C 2 Direct excitation CH + e  CH* + e C 2 + e  C 2 * + e CH 4 + e  CH* + 3H + e C 2 H y + e  CH* + CH x + e C 2 H y + e  C 2 * + H m + e Particle fluxPhoton flux Example: Photon efficiencies of CH and/or Dissociation modelling

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrocarbons: dissociation modelling Density ratios C 2 Swan radiation Direct excitation dominates C 2 * ~ C 2 ~ C 2 H 2 Rate coefficients [m 3 /s] CH A-X radiation CH* ~ CH, CH 4 Direct + dissociative excitation … and collisional radiative modelling: effective rate coefficients

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrocarbons: dissociation modelling Dissociation model for hydrocarbons: model for methane Based on  electron impact processes C x H y + e → C x H y-m + H m + e C x H y + e → C x H y + + 2e; … Erhardt&Langer data completed with Brooks data Janev&Reiter data  heavy particle collisions (optional) CH 3 + CH 3 → C 2 H 6 C 2 H + C 2 H → C 2 +C 2 H 2 Tahara data A.B. Ehrhardt, W.D. Langer, PPPL-2477 (1987)J.N. Brooks et al., ANF/FPP/TM-297 (1999) R. Janev, D. Reiter, Jül3966 (2002) and Jül4005 (2003) Exchange of data base Exchange of data base Importance of heavy particle collisions Importance of heavy particle collisions Formation of higher hydrocarbons (ethane family) Formation of higher hydrocarbons (ethane family) H. Tahara et al., Jpn. J. Appl. Phys. 34 (1995) 1.

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrocarbons: dissociation modelling Dissociation model for hydrocarbons: model for methane Check data bases (electron impact processes only) CH 4 (t=0) = m -3, T e = 4 eV, n e = m -3 Janev&Reiter dataErhardt&Langer with Brooks data Deviations by a factor of two Formation of higher hydrocarbons is negligible Deviations by a factor of two Formation of higher hydrocarbons is negligible

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrocarbons: dissociation modelling Dissociation model for hydrocarbons: model for methane Check data bases: electron impact processes and heavy particles CH 4 (t=0) = m -3, T e = 4 eV, n e = m -3 Janev&Reiter dataErhardt&Langer with Brooks data Different pattern for higher hydrocarbons Factor of two difference in C 2 formation Different pattern for higher hydrocarbons Factor of two difference in C 2 formation

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrocarbons: dissociation modelling Dissociation model for hydrocarbons: model for methane Importance of heavy particle collisions at low T e CH 4 (t=0) = m -3, n e = m -3 Janev&Reiter data T e = 4 eVT e = 2 eV Less electron impact dissociation

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrogen: dissociation modelling Manifold of hydrogen species Surface recombination H H+H+ H2H2 Ionisation Dissociation Recombination Charge exchange Vibrational excitation ··· Relevance of  vibrational excitation: resonant processes  heavy particle collisions: formation of H 3 +, H -, H 2 (v), H 2 * H, H* H 2 +, H 3 +, H +, Hˉ H 2 (v), H 2 * H, H* H 2 +, H 3 +, H +, Hˉ … T e = 2.5 eV, n e = m -3 T vib = 3000 K, T gas = 450 K, p = 10 Pa Preliminary results

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Yacora for hydrogen: dissociation modelling Consequences on population of atomic hydrogen: coupling to hydrogen species H(n) H H+H+ H2+H2+ H2H2 H-H- recombination dissociative recombination dissociative excitation effective excitation mutual neutralisation H־ + H +  H* + H Collisional radiative and dissociation modelling Input data described in: D. Wünderlich, PhD Thesis University of Augsburg (2004)

Max-Planck-Institut für Plasmaphysik Ursel FantzCRP Meeting, September 2005 Summary Compilation and Extension of a Database for Systematic Studies on Diatomic Molecules Tools available Already done Prospects TraDiMo H 2, D 2, T 2, HD, HT, DT CH, C 2, BH, BeH,… Yacora Collisional radiative model Dissociation model H 2, H CH 4 CH, C 2, BH H 2 IPProg CH, C 2, BHCH, C 2, BH, BeH, … selected statesstates available Compilation Extension Systematic studies ++