Chapter 9: Molecular-dynamics Integrate equations of motion-- classical! Discrete form of Newton’s second law Forces from interaction potential For a simple.

Slides:



Advertisements
Similar presentations
Time averages and ensemble averages
Advertisements

Simulazione di Biomolecole: metodi e applicazioni giorgio colombo
The Kinetic Theory of Gases
Pressure and Kinetic Energy
How to setup the initial conditions for a Molecular Dynamic Simulation
Biological fluid mechanics at the micro‐ and nanoscale Lecture 7: Atomistic Modelling Classical Molecular Dynamics Simulations of Driven Systems Anne Tanguy.
Transfer FAS UAS SAINT-PETERSBURG STATE UNIVERSITY COMPUTATIONAL PHYSICS Introduction Physical basis Molecular dynamics Temperature and thermostat Numerical.
Computational simulation of Molecular dynamics Talk given at the theory group, School of Physics, USM 31 Oct pm.
Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the lattice properties of crystals.
Molecular Dynamics Basics (4.1, 4.2, 4.3) Liouville formulation (4.3.3) Multiple timesteps (15.3)
Physics 100 Chapt 9 Temperature & heat. Temperature scales Fahrenheit 212 F 32 F F room temp 27 C 300 K 80 F.
First law of thermodynamics
Joo Chul Yoon with Prof. Scott T. Dunham Electrical Engineering University of Washington Molecular Dynamics Simulations.
The Helmholtz free energyplays an important role for systems where T, U and V are fixed - F is minimum in equilibrium, when U,V and T are fixed! by using:
1 Scalar Properties, Static Correlations and Order Parameters What do we get out of a simulation? Static properties: pressure, specific heat, etc. Density.
Room 2032 China Canada Winnipeg Manitoba.
Chapter 7 Linear Momentum. Chapter Momentum Linear Momentum- product of mass times velocity p=mvp=momentum units=kg.m/sec Restate Newton’s second.
Javier Junquera Molecular dynamics in the microcanonical (NVE) ensemble: the Verlet algorithm.
The Interior of Stars I Overview Hydrostatic Equilibrium
Chapter 5 Energy.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Kinetic energy Derivation of kinetic energy. Kinetic Energy 2 starting equations F = m x a (Newton’s 2 nd law) W = Force x distance.
Molecular Dynamics Simulation Solid-Liquid Phase Diagram of Argon ZCE 111 Computational Physics Semester Project by Gan Sik Hong (105513) Hwang Hsien Shiung.
Thermal Physics Thermal Physics is the study of temperature and heat and how they effect matter. Heat leads to change in internal energy which shows as.
Molecular Dynamics A brief overview. 2 Notes - Websites "A Molecular Dynamics Primer", F. Ercolessi
20 B Week II Chapters 9 -10) Macroscopic Pressure Microscopic pressure( the kinetic theory of gases: no potential energy) Real Gases: van der Waals Equation.
Minimization v.s. Dyanmics A dynamics calculation alters the atomic positions in a step-wise fashion, analogous to energy minimization. However, the steps.
Basics of molecular dynamics. Equations of motion for MD simulations The classical MD simulations boil down to numerically integrating Newton’s equations.
Force Fields and Numerical Solutions Christian Hedegaard Jensen - within Molecular Dynamics.
The kinetic theory of gases and the gas laws. Kinetic theory/ideal gas We can understand the behaviour of gases using a very simple model, that of an.
Chapter 6: Molecular Dynamics
J. D. Honeycutt and D. Thirumalai, “The nature of folded states of globular proteins,” Biopolymers 32 (1992) 695. T. Veitshans, D. Klimov, and D. Thirumalai,
Energy is the capacity to do work or produce a change. Think of the energy of a substance as the total of the kinetic & potential energies of all the particles.
Object of Plasma Physics
Time-dependent Schrodinger Equation Numerical solution of the time-independent equation is straightforward constant energy solutions do not require us.
Molecular dynamics simulation of strongly coupled QCD plasmas Peter Hartmann 1 Molecular dynamics simulation of strongly coupled QCD plasmas Péter Hartmann.
Metals I: Free Electron Model
Molecular Modelling - Lecture 2 Techniques for Conformational Sampling Uses CHARMM force field Written in C++
Incremental Integration of Computational Physics into Traditional Undergraduate Courses Kelly R. Roos, Department of Physics, Bradley University Peoria,
Ludwid Boltzmann 1844 – 1906 Contributions to Kinetic theory of gases Electromagnetism Thermodynamics Work in kinetic theory led to the branch of.
Work Readings: Chapter 11.
Monatomic Crystals.
Molecular dynamics (4) Treatment of long-range interactions Computing properties from simulation results.
Thermal Physics 3.2 Modelling a gas. Understanding  Pressure  Equation of state for an ideal gas  Kinetic model of an ideal gas  Mole, molar mass,
1 Semester Review EP I. 2 1 Vector Addition Graphical Algebraic.
©D.D. Johnson and D. Ceperley MSE485/PHY466/CSE485 1 Scalar Properties, Static Correlations and Order Parameters What do we get out of a simulation?
D. M. Ceperley, 2000 Simulations1 Neighbor Tables Long Range Potentials A & T pgs , Today we will learn how we can handle long range potentials.
1 Announcements lecture slides online wireless account lifetime group photo Monday morning 1.
Molecular dynamics (MD) simulations  A deterministic method based on the solution of Newton’s equation of motion F i = m i a i for the ith particle; the.
1 Calculation of Radial Distribution Function (g(r)) by Molecular Dynamic.
Introduction to Computer Simulation of Physical Systems (Lecture 4) Simulating Particle Motion (CONTINUED) PHYS 3061.
Thermal Physics 3.2 Modelling a gas. Understanding  Pressure  Equation of state for an ideal gas  Kinetic model of an ideal gas  Mole, molar mass,
General Physics 1 Hongqun Zhang The Department of Physics, Beijing Normal University June 2005.
Work W-E Theorem Pt. 1 1 Newton’s Second Law in Terms of Work Conservation of Kinetic Energy Work-Energy Theorem Work-Energy Diagram.
17 Temperature and Kinetic Theory Thermal Equilibrium and Temperature Gas Thermometers and Absolute Temperature The Ideal Gas Law The Kinetic Theory of.
16 Heat Capacity.
Computational Physics (Lecture 18)
Computational Physics (Lecture 20)
Virial Theorem LL2 Section 34.
Ideal Gases Kinetic Theory of Gases
Scalar Properties, Static Correlations and Order Parameters
Overview 17 Zeroth Law and Equilibrium Temperature and Scales
Oscillations Readings: Chapter 14.
Chapter 9: Molecular-dynamics
16 Heat Capacity.
Liouville formulation (4.3.3)
Thermal Energy & Heat Capacity:
Newton’s Third Law of Motion
Hydrogen Oxidation by MD Simulations
Chapter 19 The kinetic theory of gases
Presentation transcript:

Chapter 9: Molecular-dynamics Integrate equations of motion-- classical! Discrete form of Newton’s second law Forces from interaction potential For a simple pair potential, we get

Integrating equations of motion This works out to give the Verlet algorithm,

Lennard-Jones potential for noble gas

Placing atoms on fcc lattice… non-primitive basis ! start with non-primitive fcc basis r1(1)=0.0d0 r2(1)=0.0d0 r3(1)=0.0d0 r1(2)=0.5d0 r2(2)=0.5d0 r3(2)=0.0d0 r1(3)=0.5d0 r2(3)=0.0d0 r3(3)=0.5d0 r1(4)=0.0d0 r2(4)=0.5d0 r3(4)=0.5d0

Some parameters for lattice… INTEGER, PARAMETER :: nn=10 INTEGER, PARAMETER :: Prec14=SELECTED_REAL_KIND(14) INTEGER, PARAMETER :: natoms=4*nn**3 INTEGER, PARAMETER :: nx=nn,ny=nn,nz=nn REAL(KIND=Prec14), PARAMETER :: sigma=1.0d0,epsilon=1.0d0 REAL(KIND=Prec14), PARAMETER :: L=sigma*2.0d0**(2.0d0/3.0d0)*nn

Generate the full lattice n=0 do ix=1,nx do iy=1,ny do iz=1,nz do i=1,4 n=n+1 rx(n)=(r1(i)+dble(ix-1))*sigma ry(n)=(r2(i)+dble(iy-1))*sigma rz(n)=(r3(i)+dble(iz-1))*sigma enddo ! scale lengths by box size rx=rx/nx ry=ry/ny rz=rz/nz

! Compute potential and force at cutoff sovr=sigma/rcut vcut=4.0d0*epsilon*(sovr**12-sovr**6) fcut=(24.0d0*epsilon/rcut)*(2.0d0*sovr**12-sovr**6) Some preliminaries…

! Initialize velocities by picking last position call RANDOM_SEED do n=1,natoms call RANDOM_NUMBER(ranx) call RANDOM_NUMBER(rany) call RANDOM_NUMBER(ranz) rxl(n)=rx(n)+v0*(0.5d0-ranx) ryl(n)=ry(n)+v0*(0.5d0-rany) rzl(n)=rz(n)+v0*(0.5d0-ranz) enddo Initialize velocities using random-number generator Must adjust everything to give zero net momentum…

do i=1,natoms-1 do j=i+1,natoms sxij=rx(i)-rx(j) syij=ry(i)-ry(j) szij=rz(i)-rz(j) sxij=sxij-dble(anint(sxij)) syij=syij-dble(anint(syij)) szij=szij-dble(anint(szij)) rij=L*dsqrt(sxij**2+syij**2+szij**2) if(rij.lt.rcut) then sovr=sigma/rij epot=epot+4.0d0*epsilon*(sovr**12-sovr**6)-vcut+fcut*(rij-rcut) fij=-(24.0d0*epsilon/rij)*(2.0d0*sovr**12-sovr**6)+fcut get x,y,z components of force, use Newton’s 3rd law… Implementing periodic boundary conditions: Computing forces and potential energy…

! Verlet algorithm to move atoms, compute kinetic energy do i=1,natoms rxx=2.0d0*rx(i)-rxl(i)+fx(i)*dt**2/(amass*L) ryy=2.0d0*ry(i)-ryl(i)+fy(i)*dt**2/(amass*L) rzz=2.0d0*rz(i)-rzl(i)+fz(i)*dt**2/(amass*L) vx=(rxx-rxl(i))*L/(2.0d0*dt) vy=(ryy-ryl(i))*L/(2.0d0*dt) vz=(rzz-rzl(i))*L/(2.0d0*dt) vsq=vx**2+vy**2+vz**2 ekin=ekin+0.5d0*amass*vsq rxl(i)=rx(i) ryl(i)=ry(i) rzl(i)=rz(i) rx(i)=rxx ry(i)=ryy rz(i)=rzz enddo Advance atoms, compute kinetic energy….

ekin=ekin/natoms; epot= epot/natoms; etot=epot+ekin time=time+tunit*dt temp=(2.0d0/3.0d0)*eps*ekin write(6,100) n,time,ekin,epot,etot,temp enddo 100 format(i8,f12.2,4f18.6) Output including time and temperature eps=120 for Argon potential…. energy scale Ekin,epot, temp will fluctuate… etot should be fairly Stable if small enough time step used…

Heat capacity Angle brackets thermal average In MD, thermal averages done by time average Heat capacity given by fluctuations in total energy The computed epot and temperature can be used to determine heat capacity (output in units of k B )

Radial distribution function  is the density N/   Dirac-delta defined numerically (not infinitely sharp) In an ideal gas, g(r) =1 In a liquid, g(r) =1 at long ranges, short range structure In a crystal, g( r) has sharp peaks, long-range order