Nuclear moment measurements of neutron-rich Al isotopes using spin-polarized RI beams Daisuke Kameda Nuclear moment measurements of neutron-rich Al isotopes.

Slides:



Advertisements
Similar presentations
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Daisuke Kameda BigRIPS team, RIKEN Nishina Center
Shell model studies along the N~126 line Zsolt Podolyák.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Systematic study of the many- particle and many-hole states in and around the Island of Inversion - #N=Odd system - M. Kimura(Hokkaido)
Spin polarization of 23 Ne produced in heavy ion reactions M. Mihara 1, K. Matsuta 1, R. Matsumiya 1, T. Nagatomo 1*, M. Fukuda 1,T. Minamisono 2, S.
W A RICHTER UNIVERSITY OF THE WESTERN CAPE Shell-model studies of the rp reaction 25 Al(p,γ) 26 Si.
The Collective Model Aard Keimpema.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Stephane Grévy : October 8, 2012 Unveiling the intruder deformed state in 34 Si 20 and few words about N=28 IFIN - Bucharest F. Rotaru.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
1 10/15/2015 Cuie Wu School of Physics, Peking University Neutron removal reactions of 17 C Cuie Wu et al., JPG31(2005)39.
H. Ueno, A. Yoshimi, T. Nagatomo, T. Sugimoto, Y. Kobayashi H. Watanabe, M. Ishihara Tokyo Institute of Technology K. Asahi, D. Nagae, M. Takemura, K.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
Experimental evidence for closed nuclear shells Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)
Evolution of Nuclear Structure with the Increase of Neutron Richness – Orbital Crossing in Potassium Isotopes W. Królas, R. Broda, B. Fornal, T. Pawłat,
Spin-orbit potential in 6 He studied with polarized proton target 2007/6/5, INPC2007 Satoshi Sakaguchi Center for Nuclear Study, Univ. of Tokyo.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
N = Z N=Z line coincides with doubly-magic core Single-particle states wrt 100 Sn core Neutron-proton correlations in identical orbitals Neutron-proton.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Erosion of N=28 Shell Gap and Triple Shape Coexistence in the vicinity of 44 S M. KIMURA (HOKKAIDO UNIV.) Y. TANIGUCHI (RIKEN), Y. KANADA-EN’YO(KYOTO UNIV.)
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Magnetic moment measurements with the high-velocity transient field (HVTF) technique at relativistic energies Andrea Jungclaus IEM-CSIC Madrid, Spain Andrew.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Cluster aspect of light unstable nuclei
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
K. Asahi Tokyo Institute of Technology (Tokyo Tech) Nuclear structure studies with polarized radioactive beams The 18th International Spin Physics Symposium.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Leuven - Mainz - ISOLDE collaboration at CERN
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Exotic neutron-rich nuclei
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
Nuclear moments and charge radii of Mg isotopes from N=8 up to (and beyond) N=20 Univ. Mainz: M. Kowalska, R. Neugart K.U.Leuven: D. Borremans, S. Gheysen,
Shifts in neutron single- particle states outside N=82 S.J.Freeman, B.P.Kay, J.P.Schiffer, J.A.Clark, C.Deibel, A.Heinz, A.Parikh, P.D.Parker, K.E.Rehm.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
g-ray spectroscopy of the sd-shell hypernuclei
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
The role of isospin symmetry in medium-mass N ~ Z nuclei
Shell-model calculations for the IoI —a review from a personal point of view Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency.
Structure and dynamics from the time-dependent Hartree-Fock model
Emmanuel Clément IN2P3/GANIL – Caen France
Isospin Symmetry test on the semimagic 44Cr
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Daisuke ABE Department of Physics, University of Tokyo
Probing correlations by use of two-nucleon removal
Presentation transcript:

Nuclear moment measurements of neutron-rich Al isotopes using spin-polarized RI beams Daisuke Kameda Nuclear moment measurements of neutron-rich Al isotopes using spin-polarized RI beams - Determination of the boundary of the “island of inversion” - Daisuke Kameda RIKEN, Asahi Applied Nuclear Physics Laboratory The 17th International Spin Physics Symposium, SPIN2006 October. 2 nd –7 th, 2006, Kyoto, Japan K. Asahi, H. Ueno, A. Yoshimi, T. Haseyama, H. Watanabe Y. Kobayashi and M. Ishihara RIKEN, Asahi Applied Nuclear Physics Laboratory K. Asahi, D. Nagae, K. Shimada, M. Takemura, K. Takase, T. Arai, S. Suda, T. Inoue and M. Uchida Department of Physics, Tokyo Institute of Technology J. Murata and H. Kawamura Department of Physics, Rikkyo University Collaborators:

Introduction :  Nuclear moment studies in the vicinity of the island of inversion  Why 32 Al(Z=13, N=19) ? Experiment and Result Comparison with shell models Summary Outline:

Nuclear moment studies in the vicinity of the island of inversion Ne Mg Al Na F Si P 20 Z N Island of Inversion E.K. Warburton, J. A. Becker and B. A. Brown, PRC41(1990)1147. Monte Carlo shell model with sdpf model space: Y. Utsuno, et al., Phys. Rev. C70(2004) s 1/2 f 7/2 d 5/2 d 3/2 p 3/2 f 7/2 d 3/2 p 3/2 Normal sd-shell configuration d 5/2 s 1/2 0p0h, spherical2p2h (intruder), deformed In the case of Na isotope chain:

Nuclear moment studies II: neutron-rich N=19 isotones  ( 31 Mg, I  =1/2 + ) : G. Neyens et al., Phys. Rev. Lett. 94 (2005) Al (Z=13) : Our previous work Phys. Lett. B615 (2005)186. The Q-moment for the ground state of 32 Al is expected to provide the conclusive answer.  ( 32 Al) is well reproduced by sd (0p0h) shell models  2p2h dominance, deformed Ne Mg Al Na F Si P N=19 Z N=20 |  ( 32 Al gs ;1 + ) |= 1.959(9) μ N 1.2p2h dominating state 2.~50% mixing of a 2p2h state to a 0p0h state 3.Normal sd shell The low-lying levels are not reproduced well by the sd shell models. M. Robinson et al., Phys. Rev. C53(1996)R1465. Indication of reducing the shell gap :

Experiment for Q ( 32 Al g.s. ) in RIKEN Procedure : 1, Produce spin-polarized 32 Al beam via projectile fragmentation 2, Detect the quadrupole resonance using the  -NMR technique

Production of spin-polarized 32 Al beam Primary beam 40 Ar 95 AMeV, 40pnA Nb targetNb, 0.37 g/cm 2 Secondary beam 32 Al Emission angle1.3 – 5.2 deg. Momentum12.6 GeV/c ±3 % x 10 3 particle/sec. Purity85% Polarization~ 0.7 % RIKEN Projectile fragment separator (RIPS): B  = (mv 0 /e) AZAZ  = 3.6 m) ∝Z2 ∝Z2 dEdxdEdx Isotope separation: Particle identification:  F2 SSD TOF (F2 PPAC - RRC) Selected momentum region: 40 Ar K. Asahi, et al., Phys. Lett. B251 (1990) 488 Key technique for polarization : To produce polarization, the Fermi motion of nucleons in the projectile and fragment was utilized.

 -NMR apparatus 55° ~0.5 Tesla R = W(0)/W(  ) = (1+A  P)/(1-A  P) β-ray angular distribution for pol. nuclei : W(  ) 1 + A  P cos  ~ = [A   32 Al)=  -0.85] R ’ = (1-A  P)/(1+A  P)  -ray up/down ratio: NMR effect (AFP) : P  -P freq. + - = 0 3 cos 2  c Q = g  N B 0 /h (Larmor frequency) Q = e 2 qQ/h (Quadrupole coup. const.)  c = 0 ( crystal c-axis // B 0 ) The resonance frequencies of 32 Al( I =1) in a stopper of single-crystal  -Al 2 O 3 : In the present work,  -ray asymmetry change observed: ~ = 1- R’ / R 4AP4AP Crystal structure of  -Al 2 O 3 : h.c.p. pol. 32 Al stopper surface

Quadrupole resonance spectra with  -Al 2 O 3 stopper |Q( 32 Al)| Q ( 27 Al) Q ( 32 Al) |Q( 27 Al)| ref. Q ( 27 Al) in  -Al2O3: J. Magn. Reson. 89 (1990) 515. Q( 27 Al): Phys. Rev. Lett. 68 (1992) 927. Crystal c-axis // B 0 Q ( 32 Al) = 407(34) kHz = |Q( 32 Al)| = 24(2) mb Temperature : ~ 80 K = 140.2(10) mb 2389(2) kHz Fitting analysis : Gaussian function taking into account the efficiency for AFP spin reversal Chemical shift : (3) % (negligible) J. Magn. Reson. 128 (1997) 135. taking the overall error into account Q (= e 2 qQ/h) kHz to be submitted.

Systematic comparison :  and Q for Al isotopes Experimental data : N.J. Stone, Atomic Data and Nucl. Data. Tables 90 (2005) 75. Calculation code : OXBASH, B.A. Brown, A. Etchegoyen, W.D.M.Rae, MSU Cycl. Lab. Rep. No.524(1986). USD Hamiltonian (for sd-shell nucluei) : B.Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5 Effective operators : B.A. Brown and B.H. Wildenthal, Nucl. Phys.A 474 (1987) (e p, e n ) = (1.3, 0.5) Monte Carlo shell model calc. by Utsuno (in private communication) sd -normal configurations : 87 % fp-intruder configurations : 13 % 32 Al g.s : Single-particle-like configurations Very small Q-moment 0h0h 0h0h The calculated sd-configurations of 32 Al g.s.  2 = 79 %,  2 < 3.8 % | 32 Al g.s ( I  =1 + ) |  d -1 5/2 d -1 3/2 J=1+ =  +  |  d 3 5/2 d 2 3/2 ) d -1 3/2 J=1+ + …

Why is so small the Q-moment of 32 Al ? = = 92 e p radial part: Harmonic Osci.(M. Carchidi et al, PRC34(1986)2280 ) A(I,j,j’) + B(I,j,j’) = 20 e p + 5 e n Reduced E2 matrix elements : = 70 e n Geometrical terms involving 6j symbols: A(I,j,j’),B(I,j,j’) Small geometrical factors in are main source of the small Q-moment of 32 Al. I (total spin) A(I,5/2,3/2)B(I,5/2,3/2) The case of 32 Al g.s (I=1, j=d 5/2, j’=d 3/2 ) Dominant (~80%) configuration for 32 Al g.s. :  coupl.  [  d -1 5/2 d -1 3/2 ] I=1 The small E2 matrix element for the ψ coupl. state is consistent with the small exp. value, Q( 32 Al g.s. )=24(2) mb  29 mb, taking ( e p, e p )=(1.3, 0.5) E2 matrix element for the ψ coupl. state : (Off-diagonal contributions are negligibly small according to the USD calculation by OXBASH.)

The location and variation of the boundary region The location and variation of the boundary region Ne Mg Al Na F Si P Present work sd-normal shell structure pf-Intruder structure Transitional structure : a mixing between sd-normal and pf-intruder configurations N=20 The inversion occurs gradually via a transitional nucleus 29 Na Inversion process along the Z=11 line Inversion process along the N=19 line The inversion occurs suddenly between 31 Mg and 32 Al with a drastic change on shape Island of Inversion

Summary and Conclusion Experiment on nuclear moments for the 32 Al ground state: 40 Ar + Nb  pol. 32 Al |Q( 32 Al g.s )| = 24(2) mb in cooled single crystal a-Al 2 O 3 (T~80K) ( |g( 32 Al g.s. )| = 1.951(5)  N in single crystal Si stopper ) Comparison with nuclear moments for Al isotopes and shell model calculations: Small Q( 32 Al g.s ) indicates that 32 Al has a spherical shape. The good agreements with the USD calculation indicates that 32 Al is a normal sd -shell nucleus.  The single-particle-like configuration about the [  d -1 5/2 d -1 3/2 ] J=1+ state Comparison with recent reports on the N=19 isotones 30 Na, 31 Mg and 32 Al: The clear-cut borderline of the island of inversion is located between 32 Al (normal) and 31 Mg (intruder), in sharp contrast to the case of the sodium isotope chain. Thank you for your attentions. Further investigation is needed, in particular, ,Q( 33 Al) and the low-lying level structure for 32 Al

Low-lying levels in 32 Al 1.The 4 + 1st isomer state above 2 + 1st state M. Robinson, et al., PRC53(1996)R Lowering of the negative parity state M. Robinson, et al., PRC53(1996)R1465. B. Fornal, et al., PRC55(1997) The  -decay branching ratio to the ground state from 32 Mg. G. Grevy et al., NPA734(2004)369. The g-factor of the isomer (  =200ns) is interesting. USDA from Home page of B. A. Brown

Mechanism for the sudden transition along the N =19 chain Z=12 Deformation Z=13 Upward shift of the proton valence orbits at Z=13 in the prolate deformation region Suppression of the prolate deformation for 32 Al g.s.

Analyses of Q-moments for Al isotopes Q cal =  (e p A p + e n A n ) A p(n) : E2 matrix elements for proton (neutron)  A p (mb)  A n (mb) The small Q-moment of 32 Al is constructed almost only by the E2 matrix element of USD cal. OXBASH  =0.77  =0.58  =0.77  =0.73

Production of pol. RI beam via PF reaction - Principle - Advantages : 1.chemically independent 2.very fast process R vv v0+vv0+v Projectile fragment Target nucleus Participant : v0v0 Orbital angular mom.  L=R×m  v K. Asahi, et al., Phys. Lett. B251 (1990) 488 near side far side P > 0  L P > 0 P < 0 H. Okuno et al., Phys. Lett. B 335 (1994) 29 Projectile, MeV/u 14 N N N N N 68 targetAu NbAl fragment 12 B 13 B  frag. (deg.)

 theo (USD) (  N )  exp. (  N ) Prediction power of USD calculation - magnetic moments for sd -shell nuclei : B.H. Wildenthal. Prog. Part. Nucl. Phys. 11 (1984) 5. B.A. Brown and B.H. Wildenthal, et al., Nucl. Phys. A474 (1987) USD interaction : Effective g-factos : Root mean square ~  N

→ | μ ( 30 Al GS ;3 + ) | = 3.010(7) μ N ΔF/F (1-sweep) = 1.1 (%) → | μ ( 32 Al GS ;1 + ) | = 1.959(9) μ N H. Ueno et al., Phys. Lett. B 615 (2005) 186.  -NMR spectra for 30 Al and 32 Al in sc.  -Al 2 O 3 - with the magic angle “ = 55° ” -  -NMR spectra for 30 Al and 32 Al in sc.  -Al 2 O 3 - with the magic angle “  c = 55° ” -

Intruder states of the neutron-rich N=19 isotones 30 Na (Z=11) 31 Mg (Z=12) MCSM : Y. Utsuno et al., Phys. Rev. C70 (2004) Nuclear moments: M. Keim et al., Eur. Phys. J. A8 (2000) 31.  moment and spin: G. Neyens et al., Phys. Rev. Lett. 94 (2005) Al (Z=13) intruder normal ?  moment : H. Ueno et al., Phys. Lett. B615 (2005) 186.  suggests the normal state However, the low-lying levels are not reproduced well by the sd -shell model. M. Robinson et al., PRC53(1996)R1465. B. Fornal et al., PRC55(1997)762 G. Grevy et al., Nucl. Phys. A734(2004)369 The Q-moment may be more sensitive to the intruder effect than the  -moment. We can see the sensitivity in Q( 29 Na).

Where is the border of the “ island of inversion ” ? Ne Mg Al Na F Si P N=20 energy income (  E c ) energy expense (2  E g ) The border Island Normal 32 Al 31 Mg 30 Na 1. Monopole term  Effective shell gap (E g ) : 2. Multipole term  Correlation energy (E c ) proton neutron d 5/2 d 3/2 s 1/2 EgEg f 7/2 N=16 N=20 Y. Utsuno, et al., Phys. Rev. C 60 (1999)

0 1,0 0,-1 32 Al(   =1 + ) Q-moment search using sc.  -Al 2 O 3 freq. F+F+ F-F-  c = 90°(c-axis ⊥ B 0 )

Origin of the [  d -1 5/2 d -1 3/2 ] I =1 state dominance in 32 Al g.s. 1, Energetic favor of the I =1 coupling state between neutron-proton spin-orbit partners. Isoscalar part of USDIsovector part of USD  general trend of effective interactions cf. Cohen-Kurath(p-shell), USD(sd-shell), GXPF(fp-shell) For example, 2, Neutron configurations are highly restricted in the closed-shell plus one-hole system.

Why is the Q( 32 Al g.s. ) so small ? 2, Energetic favor of the I =1 + coupling state between proton-neutron spin-orbit partners in effective interactions. 1, Dominance of the [  d -1 5/2 d -1 3/2 ] I=1+ state by about 80 %  force the Q-moment to be small 3, Neutron configurations are highly restricted in the one-hole system (N=19). origin Answer :

The other example : small Q( 12 B g.s. I =1 + ) 12 B Neutron number Q-moments (mb) code: OXBASH proton neutron 12 B( I =1 + ) =  p3/2  p1/2 p3/2 p1/2 75 % + 13% | > + … Al isotopes (1.3e n, 0.5e n ) = 10 e p

 measurement for 33 Al(N=20) - normal sd-shell structure - The  -decay scheme is well-described with the USD interaction. A.C. Morton et al., PLB544(2002) Al 89 % 33 Si 5/2+ 3/2+ P n =8.5(7)% (norma sd-shell) 32 Si Further investigation for the low-lying levels for 33 Al and nuclear moments is really needed.

33 Al (Z=13, N=19) : transitional or not ? MCSM, PRC64(2001)011301(R) For N=20 isotones According to the MCSM prediction, the intruder mixing for N=20 isotones gradually occurs via a transitional nucleus 33 Al. 33 Al The  -decay of 33 Al, however, found no indication of the intruder mixing. A.C. Morton et al., PLB544(2002)274.

 -Decay time spectrum 32 Al A e – ( t /  ) + B A 3443(86) B 167(96)  present 45(2) ms Red.  ref. Table of Isotopes Least  2 fitting :  reported = 48(6) ms

Experiment on  and Q for 32 Al 1. Production of spin-polarized RI beam using projectile fragmentation reaction :   40 Ar (95 A MeV) + Nb (target)  pol. 32 Al 2. Catch of 32 Al(, ) in a stopper : 2. Catch of 32 Al( T 1/2 =33 ms, I p =1 + ) in a stopper :   Single crystal Si stopper (g-factor measurement)   Single crystal a-Al 2 O 3 stopper (Q-moment measurement) 3. Observation of the Nuclear Magnetic Resonance (NMR) through  -ray asymmetry changes using the  -NMR technique Procedure : RIKEN Accelerator Research Facility : RIKEN Ring Cyclotron

Preparation of a  -Al2O3 stopper X-ray diffraction h.c.p. structure How to hold : Quadrupole splitting for I=1 case freq. = 0 3 cos 2  c Q = g  N B 0 /h (Larmor frequency) Q = e 2 qQ/h (QCC)  c = 0 ( crystal c-axis // B 0 )

 -NMR apparatus 55° The resonance frequency of 32 Al in sc.  -Al 2 O 3 : 0 = g  N B 0 /h (Larmor frequency) Q = e 2 qQ/h (QCC) m, m- 1 = 0 - 3cos 2  c Q 2 I (2 I -1) ( m -1/2 ) Stopper :  single-crystal Si (room temp.)  single-crystal -Al 2 O 3 (T=80K) ~0.5 Tesla W(0)/W(180) = (1+A  P)/(1-A  P) 0 1,0 0,-1 In the case of I  =1 +,  c : angle between the B 0 field and the crystal c-axis freq. X-ray diffraction β-ray angular distri. for pol. nuclei : W(  ) 1 + A  P cos  ~ = A   32 Al)=  W(0)/W(180) = (1-A  P)/(1+A  P)  -ray up/down ratio: NMR effect : P  -P

 -NMR apparatus β-ray emission from pol. RI : W(  ) 1 + A  P cos  ~ = (U/D) OFF (U/D) ON 1 - 4A  P ~ ~ (U/D) OFF = (1+A  P ) / (1-A  P ) (U/D) ON = (1-A  P ) / (1+A  P )  -ray up/down count ratio : A   for 32 Al degrader How to measure the Q-moment ? freq. = 0 3 cos 2  c Q = g  N B 0 /h (Larmor frequency) Q = e 2 qQ/h (QCC)  c = 0 ( crystal c-axis // B 0 )