Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.

Slides:



Advertisements
Similar presentations
Chapter 12 The Cell Cycle.
Advertisements

Cell Cycle and Mitosis 8.1 to 8.11
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for:
● The ability of organisms to reproduce best distinguishes living things from nonliving matter
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
The Cell Cycle.
Chapter 12 The Cell Cycle and Mitosis. The Key Roles of Cell Division Cell division functions in reproduction, growth, and repair Unicellular organisms.
Chapter 12 The Cell Cycle.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving.
Overview: The Key Roles of Cell Division
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12 The Cell Cycle. Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1.
CH 12 NOTES, part 1: Chromosomes, the Cell Cycle, and Cell Division.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter (reproduction is.
Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for –Development from a fertilized.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12.  The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter  The continuity of life.
The Cell Cycle. In unicellular organisms, division of one cell reproduces the entire organism In unicellular organisms, division of one cell reproduces.
Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin.
The Cell Cycle. Key Concepts Most division results in genetically identical cells Cell cycle consists of alternating periods of mitosis and interphase.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 12 The Cell Cycle Lab 3 Mitosis and Meiosis.
Cell reproduction and the division of the NUCLEUS and CYTOPLASM.
Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
 Purpose of cell division › Unicellular organisms  Reproduction › Multicellular organisms  Development from a fertilized cell  Growth  Repair.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Cell Cycle. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of: – ________, the division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Key Roles of Cell Division The continuity of life is based upon the reproduction.
Chapter 12 The Cell Cycle.  The continuity of life  Is based upon the reproduction of cells, or cell division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
BIO 3A Fall 2011 Cell Cycle Chapter 12. Overview: The Key Roles of Cell Division The ability of organisms to produce more of their own kind best distinguishes.
10 µm Fig Nucleus Chromatin condensing Nucleolus Chromosomes
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
Chapter 12: The Cell Cycle 1.
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis
The Cell Cycle Chapter 12.
The Key Roles of Cell Division
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12: The Cell Cycle
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
The Cell Cycle Chapter 12.
Presentation transcript:

Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of life is based on the reproduction of cells, or cell division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal

In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 12.1: Cell division results in genetically identical daughter cells Most cell division results in daughter cells with identical genetic information, DNA- Asexual reproduction A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) which then fuse to become a new organism- sexual reproduction Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin

Cellular Organization of the Genetic Material All the DNA in a cell constitutes the cell’s genome A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division DNA molecules in a dividing cell are packaged into chromosomes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µm

Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic cells (nonreproductive cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Distribution of Chromosomes During Eukaryotic Cell Division In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow “waist” of the duplicated chromosome, where the two chromatids are most closely attached Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig µmChromosomes Chromosome duplication (including DNA synthesis) Chromo- some arm Centromere Sister chromatids DNA molecules Separation of sister chromatids Centromere Sister chromatids

Eukaryotic cell division consists of: – Mitosis, the division of the nucleus – Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phases of the Cell Cycle The cell cycle consists of – Mitotic (M) phase (mitosis and cytokinesis) – Interphase (cell growth and copying of chromosomes in preparation for cell division) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Interphase (about 90% of the cell cycle) can be divided into subphases: – G 1 phase (“first gap”) – S phase (“synthesis”) – G 2 phase (“second gap”) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig S (DNA synthesis) MITOTIC (M) PHASE Mitosis Cytokinesis G1G1 G2G2

Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system The frequency of cell division varies with the type of cell These cell cycle differences result from regulation at the molecular level The cell cycle appears to be driven by specific chemical signals present in the cytoplasm Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Cell Cycle Control System The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig S G1G1 M checkpoint G2G2 M Control system G 1 checkpoint G 2 checkpoint

For many cells, the G 1 checkpoint seems to be the most important one If a cell receives a go-ahead signal at the G 1 checkpoint, it will usually complete the S, G 2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G 0 phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig G1G1 G0G0 G 1 checkpoint (a)Cell receives a go-ahead signal G1G1 (b) Cell does not receive a go-ahead signal

The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclin- dependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle MPF (maturation-promoting factor) is a cyclin- Cdk complex that triggers a cell’s passage past the G 2 checkpoint into the M phase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig M G1G1 S G2G2 M G1G1 SG2G2 M G1G1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Degraded cyclin Cdk G1G1 S G2G2 M G2G2 checkpoint Cyclin is degraded Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle Cyclin accumulation

Stop and Go Signs: Internal and External Signals at the Checkpoints Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Another example of external signals is density- dependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Anchorage dependence Density-dependent inhibition (a) Normal mammalian cells (b) Cancer cells 25 µm

A normal cell is converted to a cancerous cell by a process called transformation Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Loss of Cell Cycle Controls in Cancer Cells Cancer cells do not respond normally to the body’s control mechanisms Cancer cells may not need growth factors to grow and divide: – They may make their own growth factor – They may convey a growth factor’s signal without the presence of the growth factor – They may have an abnormal cell cycle control system Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-UN1 Telophase and Cytokinesis Anaphase Metaphase Prometaphase Prophase MITOTIC (M) PHASE Cytokinesis Mitosis S G1G1 G2G2

Mitosis is conventionally divided into five phases: – Prophase – Prometaphase – Metaphase – Anaphase – Telophase Cytokinesis is well underway by late telophase BioFlix: Mitosis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig G 2 of Interphase Centrosomes (with centriole pairs) Chromatin (duplicated) Nucleolus Nuclear envelope Plasma membrane Early mitotic spindle Aster Centromere Chromosome, consisting of two sister chromatids Prophase Prometaphase Fragments of nuclear envelope Nonkinetochore microtubules Kinetochore microtubule Metaphase plate Spindle Centrosome at one spindle pole Anaphase Daughter chromosomes Telophase and Cytokinesis Cleavage furrow Nucleolus forming Nuclear envelope forming

Fig. 12-6b PrometaphaseProphase G 2 of Interphase Nonkinetochore microtubules Fragments of nuclear envelope Aster Centromere Early mitotic spindle Chromatin (duplicated) Centrosomes (with centriole pairs) Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore microtubule

Fig. 12-6d MetaphaseAnaphase Telophase and Cytokinesis Cleavage furrow Nucleolus forming Metaphase plate Centrosome at one spindle pole Spindle Daughter chromosomes Nuclear envelope forming

The Mitotic Spindle: A Closer Look The mitotic spindle is an apparatus of microtubules that controls chromosome movement during mitosis During prophase, assembly of spindle microtubules begins in the centrosome, the microtubule organizing center The centrosome replicates, forming two centrosomes that migrate to opposite ends of the cell, as spindle microtubules grow out from them Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

An aster (a radial array of short microtubules) extends from each centrosome The spindle includes the centrosomes, the spindle microtubules, and the asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle’s two poles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Microtubules Chromosomes Sister chromatids Aster Metaphase plate Centrosome Kineto- chores Kinetochore microtubules Overlapping nonkinetochore microtubules Centrosome 1 µm 0.5 µm

In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Nonkinetochore microtubules from opposite poles overlap and push against each other, elongating the cell In telophase, genetically identical daughter nuclei form at opposite ends of the cell Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cytokinesis: A Closer Look In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Animation: Cytokinesis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig Cleavage furrow 100 µm Contractile ring of microfilaments Daughter cells (a) Cleavage of an animal cell (SEM)(b) Cell plate formation in a plant cell (TEM) Vesicles forming cell plate Wall of parent cell Cell plate Daughter cells New cell wall 1 µm

Fig. 12-UN2

You should now be able to: 1.Describe the structural organization of the prokaryotic genome and the eukaryotic genome 2.List the phases of the cell cycle; describe the sequence of events during each phase 3.List the phases of mitosis and describe the events characteristic of each phase 4.Draw or describe the mitotic spindle, including centrosomes, kinetochore microtubules, nonkinetochore microtubules, and asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

1.Compare cytokinesis in animals and plants 2.Describe the process of binary fission in bacteria and explain how eukaryotic mitosis may have evolved from binary fission 3.Explain how the abnormal cell division of cancerous cells escapes normal cell cycle controls 4.Distinguish between benign, malignant, and metastatic tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings