Applied Nuclear Physics Group The final meeting of IAEA CRP – 6. 2 Calculation and Evaluation of (n, ) Cross Sections for Producing 32 P, 105 Rh, 131 I and 192 Ir H.D. Choi and S.K. Kim Department of Nuclear Engineering, Seoul National University, Korea Nuclear Data for Production of Therapeutic Radionuclides
Applied Nuclear Physics Group 2 CRP Workscope Radioisotopes : 32 P, 105 Rh, 131 I, 192 Ir Production : 31 P(n, ) 32 P, 104 Ru(n, ) 105 Ru, 130 Te(n, ) 131 Te, 191 Ir(n, ) 192 Ir Nuclear structure and decay data : ENSDF Experimental data : EXFOR Isomeric states for two isotopes : 131g,m1 Te, 192g,m1,m2 Ir Thermal and RR region : resonance parameters + NJOY Unresolved R region : libraries (ENDF/B-VI or JENDL-3.3) High energy region : TALYS calculation (default) (OMP + other parameters tuning) Integral data production & validation
Applied Nuclear Physics Group 3 32 P Production Decay scheme of 32 P
Applied Nuclear Physics Group 4 32 P Production Thermal neutron capture cross section of 31 P. AuthorPublication Thermal (n, ) cross section [b] Seren (46) Pomerance (15) Grimeland (2) Jozefowitz (8) Kappe (74) Ishikawa (1) Salama (12) Zeng (5) Sun (unpublished) (2) Evaluation (Mughabghab) (6) This workAveraged cross section0.172(4)
Applied Nuclear Physics Group 5 Thermal cross section : 172(4) mb Resonance parameters : JENDL-3.3 Negative energy resonance parameter tuning : E R = keV, = 2.07 eV (tuned) High energy region : 545 keV – 20 MeV TALYS default calculation (local OMP) Consistency & improvement achieved EXFOR item (Macklin) at 30 keV : compilation error Derived integral cross section for T = 30 keV Maxwellian Data uncertainty input error 32 P Production
Applied Nuclear Physics Group 6 32 P Production 31 P(n, ) 32 P reaction cross sections
Applied Nuclear Physics Group 7 Decay scheme of 105 Ru and 105 Rh 105 Rh Production
Applied Nuclear Physics Group 8 Decay data for 105 Ru, ground and isomeric states of 105 Rh 105 Rh Production RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 105 Ru4.44(2) hβ (100%) -rays (18.8%) (47.8%) … (17.5%) (47.3%) … 105m Rh45 sIT (100%) -ray CE (20%) ce-K, (51.3%) ce-L, (23.1%) ce-M, (4.49%) 105 Rh35.36(6) hβ (100%) -rays 69.9 (19.7%) (75.0%, decay to ground state 105 Pd) … (5.1%) (19.1%) … IT : isomeric transition, CE : conversion electron, : average energy of -rays.
Applied Nuclear Physics Group Rh Production Thermal neutron cross section : two EXFOR items only both consistent 466(15) mb Resonance parameters : Mughabghab + = 0.14 eV (tuned) at E R = eV Unresolved Resonance region (11 – 300 keV) : JENDL Higher energy region (above 300 keV) : TALYS calculation normalization factor 1.9 14 MeV cross section = 3 mb Wagner(1980,latest) : 0.86(15) mb, average : 1.0(2) mb
Applied Nuclear Physics Group Rh Production 104 Ru (n, ) 105 Ru reaction cross sections
Applied Nuclear Physics Group I production by 131g,m Te -decay Decay scheme of 131 Te and 131 I Two final states of 131 Te 131m Te(30 hr) keV, 11/2 -, 77.8% -decay, 22.2% IT 131g Te(25 m) g. s., 3/2 +, 100% -decay
Applied Nuclear Physics Group 12 Decay data for ground and isomeric states of 131 Te and for 131 I RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 131m Te30(2) h β (77.8%) IT(22.2%) -ray CE (0.85%) ce-K, (14.4%) ce-L, (5.44%) … 131g Te25.0(1) mβ (100%) -rays (9.96%) (21.7%) (59.3%) … (68.8%) (18.2%) … 131 I (11) dβ (100%) -rays 96.6 (7.3%) 192 (90%) … (82%) 637 (7.2%) … IT : isomeric transition, CE : conversion electron, : average energy of -rays. 131 I Production
Applied Nuclear Physics Group I Production 130 Te(n, ) 131 Te reaction cross section (existing libraries)
Applied Nuclear Physics Group I Production Isomeric ratios for thermal neutron capture cross section of 130 Te AuthorPublication Isomeric ratios for thermal neutron capture δ 1 (= σ g /σ m )δ 2 (= σ m /σ g+m ) Seren Sehgal Mangal Namboodiri (3) Bondarenko (5) Reifarth (5) Tomandl-I (2) Tomandl-II (4) Evaluation (Mughabghab) (4) This studyAverage (3)
Applied Nuclear Physics Group 15 AuthorPublication Thermal neutron capture cross section [mb] σ0σ0 σ0gσ0g σ0mσ0m Seren (44)222(44) < 8(3) Pomerance (250) Sehgal (61)270(60)40(10) Mangal (24) Honzatko (20) Tomandl (13) Tomandl (20) Evaluation (Mughabghab) (61)270(60)20(10) This study Averaged cross section 204(10)192(10)12(1) 131 I Production Thermal neutron capture cross section of 130 Te
Applied Nuclear Physics Group I Production Thermal neutron cross section : weighted ave. δ 2 and σ γ0 σ 0 = 204(10) mb, δ 2 (25.3 meV) = 0.058(3) Resonance parameters : JENDL = 0.06 eV at E R = eV Higher energy region (31 keV – 20 MeV) : TALYS calculation Fit to σ tot (E), σ g+m (E), σ g (E) by fine tuning OMPs, variation of target nucleus level density parameters, etc. EXFOR entry (Dovbenko) for σ g (E) : unit in mb (2 nd CRP) Improve TALYS prediction for σ tot (E) around 1 MeV Little improve for σ inel (E) and σ (E)
Applied Nuclear Physics Group I Production A fit to 130 Te+n total reaction cross section tot (E) A fit (continuous line) Default TALYS result (dash dotted) Fit without normalization (dotted) EXFOR data (symbol).
Applied Nuclear Physics Group I Production 130 Te(n, ) 131 Te reaction cross section (this work)
Applied Nuclear Physics Group I Production 130 Te+n reaction channels cross sections (1 keV - 20 MeV)
Applied Nuclear Physics Group I Production Energy variation of optical model potential depths Other parameters : fixed during the fit (a= fm, r= 1.22 fm, etc). Final OMPs within 2% change from global OMPs
Applied Nuclear Physics Group I Production Branching ratios for 130 Te(n, ) 131 Te
Applied Nuclear Physics Group Ir Production Decay scheme of 192 Ir 1) Odd-odd tri-axially deformed nucleus 192 Ir : isomeric triplet 2) Decay and structure properties for g.s. and 1 st isomeric state : definite 3) 2 nd isomeric state : long-lived isomer First discovery (1959) One(+1?) measurement : discoverer Two measurements on half-life Latest measurement (1991) : theoretical discussion only Spin-parity, level energy and decay : arguments left More measurements needed !
Applied Nuclear Physics Group 23 RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 192m2 Ir241(9) y IT (100%) -ray CE (0.0974%) ce-L, 142 (74.6%) ce-M+, 153 (24.6%) ce-K, 79.1 (0.65%) 192m1 Ir1.45(5) m β - (0.0175%) IT ( %) CE -ray ce-L, 43.3 (72.4%) ce-M, 53.5 (21%) ce-N+, 56.0 (6.5%) (0.003%) 192g Ir73.827(13)d β - (95.13%) EC (4.87%) -rays 71.6 (5.6%) (41.4%) (48%) … (28.7%) (29.7%) (82.7%) (47.8%) … 192 Ir Production Decay data for ground and isomeric states of 192 Ir
Applied Nuclear Physics Group Ir Production Thermal neutron capture cross sections of 191 Ir Author Publication date Thermal neutron capture cross section [b] 00 0g0g 0 m1 0 m2 Seren (200)260(104) Harbottle ( ) Keisch (67) 300(30)610(60) Arino (300)300(50) Sims (25) Heft (13) Masyanov (3) Evaluation Mughabghab (10)309(30)645(32)0.16(7) NGATLAS EAF This work962(11)317(58)645(120)0.13(6)
Applied Nuclear Physics Group Ir Production Thermal neutron cross section : weighted ave. σ γ0 isomeric cross sections : branch ratios by Keish(1963) Resonance parameters : ENDF/B-VI + = eV at E R = eV Higher energy region (0.3 keV – 20 MeV) : TALYS calculation Fit to σ (E) by fine tuning OMPs + normalization No experimental set for σ tot (E), σ el (E) TALYS predictions for σ γ g (E), σ γ m1 (E), σ γ m2 (E)
Applied Nuclear Physics Group Ir Production 191 Ir(n, ) 192g,m1,m2 Ir cross sections (this work) Total capture cross section The resolved cross sections for ground state and two isomeric states are given separately.
Applied Nuclear Physics Group Ir Production TALYS Predicting branching ratios of 191 Ir(n, ) 192 Ir reaction
Applied Nuclear Physics Group Cu Production 67 Zn(n,p) 67 Cu cross sections (existing libraries + Qaim)
Applied Nuclear Physics Group Cu Production 64 Zn(n,p) 64 Cu cross sections (existing libraries + this CRP)
Applied Nuclear Physics Group 30 Validation and Integral Quantities Integral quantities for 31 P(n, ) 32 P cross section Sources σ 0 (2200 m/s) [b] Maxwellian(300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation) 0.172(6)0.085(10) ENDF/B-VI JENDL This Work0.172(4) EXFOREXFOR Harris 1950~0.10 Macklin Hayodom (10)
Applied Nuclear Physics Group 31 Validation and Integral Quantities Integral quantities for 104 Ru(n, ) 105 Ru cross section Sources σ 0 (2200 m/s) [b] Maxwellian (300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation) 0.32(2)4.3(1) ENDF/B-VI JENDL This Work0.466(15) EXFOREXFOR Lantz (4) Linden (3) Ricabarra Bereznai (25) Heft (65)
Applied Nuclear Physics Group 32 Validation and Integral Quantities Integral quantities for 130 Te(n, ) 131 Te cross section Sources σ 0 (2200 m/s) [b] Maxwellian (300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation of total) 0.290(61)0.46(5) ENDF/B-VI (total) JENDL-3.3 (total) This Work total0.204(10) ground0.192(10) isomeric0.012(1) EXFOREXFOR Ricabarra (14) Browne (32) Linden (3)
Applied Nuclear Physics Group 33 Validation and Integral Quantities Integral quantities for 191 Ir(n, ) 192 Ir cross section Libraries σ 0 (2200 m/s)[b] Maxwellian (300 K ) [b] Resonance integral I 0 [b] Fast cross section [b] Fission14 MeV Mughabghab(evaluation)954(10)3500(100) ENDF/B-VI JEFF This Work Total962(11) ),5) Ground317(58) ) Meta1645(120) ),6) Meta20.13(6) ) 8.04 EXFOREXFOR Harris (230) 1) Sims (240) 1) Koehler (285) 2), 940(160) 3) Linden (382) 4) Heft (480) 1) Masyanov (70) 1)
Applied Nuclear Physics Group 34 Validation and Integral Quantities Integral quantities for 191 Ir(n, ) 192 Ir cross section 1) Lower limit of resonance integral = 0.5 eV, 2) Lower limit of resonance integral = 0.62 eV, 3) Value for the 1st isomeric state with lower integral limit 0.62 eV, 4) Lower limit of resonance integral = 0.55 eV, 5) I 0 tot (0.50eV) = 3558 b, I0tot(0.62eV) = 2940 b, 6) I 0 m1 (0.62eV) = 1969 b.
Applied Nuclear Physics Group 35 Validation and Integral Quantities Integral quantities for 67 Zn(n,p) 67 Cu cross section Sources Spectrum averaged cross section [mb] FissionCf-252 *) Others Library Qaim calculation (STAPRE) [47] **) JEFF-3.1/A [21] **) JENDL-Act.[46] **) EvaluationCalamand 1974 [49]1.07(4) MeasurementHoribe 1989 [48]1.01(9) Brodskaja (7) Spahn 2004 [50]5.13(87) ) *) Cf-252 neutron spectrum with effective temperature T=1.42 MeV and integration limit from 1 keV to 20 MeV were used. **) 14 MeV neutron spectrum with the same integration limit was used. ) 14 MeV d(Be) neutron spectrum.
Applied Nuclear Physics Group 36 Validation and Integral Quantities Integral quantities for 64 Zn(n,p) 64 Cu cross section Sources Spectrum averaged cross section [mb] FissionCf-252 *) Others LibraryRNAL (Qaim adoption) **) JEF **) IRDF **) RRDF-2006 [51] **) EvaluationCalamand 1974 [49]31.0(23) Mannhart 1989 [53]40.47(75) Mannhart 2003 [54]40.59(67) MeasurementCohen 2005 [52]37.4(14) Kobayashi (18) Benabdallah (15) Kobayashi (17) Spahn 2004 [50]132(25) )
Applied Nuclear Physics Group 37 Much thanks to Dr. Dad. Jean Sublet, Arjan Koning, and Everyone !!!