Wieman: 1 STAR Silicon Micro Vertex Detector NSAC/DOE Review June 2, 2004.

Slides:



Advertisements
Similar presentations
Wieman: 1 LBNL Micro-vertex STAR Collaboration Meeting Aug 2003 LBNL Howard Wieman, Fred Bieser, Robin Gareus (Heidelberg), Howard Matis, Marcus Oldenburg,
Advertisements

HFT Technical Overview September 26, HFT 2013 TPC FGT 2011 STAR Detectors Fast and Full azimuthal particle identification EMC+EEMC+FMS (-1 ≤ 
STAR Heavy Flavor Tracker
Heavy Flavor Physics in HIC with STAR Heavy Flavor Tracker Yifei Zhang (for the STAR HFT Group) Hirschegg 2010, Austria Outline:  Physics motivation 
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
STAR upgrade workshop, Yale, Jun , People: F. Bieser, R. Gareus, L. Greiner, H. Matis, M. Oldenburg, F. Retiere, H.G. Ritter, K.S., A. Shabetai(IReS),
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
L. Greiner1SLAC Test Beam 03/17/2011 STAR LBNL Leo Greiner, Eric Anderssen, Howard Matis, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak,
LBNL Michal Szelezniak, Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
HFT PXL Mechanical July 2010 Howard Wieman LBNL 1.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
David L. Winter for the PHENIX Collaboration PHENIX Silicon Detector Upgrades RHIC & AGS Annual Users' Meeting Workshop 3 RHIC Future: New Physics Through.
1 HFT Technology and Mechanical Design Wieman RNC LBNL TAC Review Wed. 11:30 – 12:05 15-Mar-2006.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
1 Jim Thomas - LBL STAR Inner Tracking Upgrades with an emphasis on the Heavy Flavor Tracker presented by Jim Thomas Lawrence Berkeley Laboratory 11 /
Leo Greiner IPHC testing Sensor and infrastructure testing at LBL. Capabilities and Plan.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Wieman: 1 LBNL Status and R&D plans for the STAR Microvertex Detector Development 22-Nov-03 LBNL Fred Bieser, Robin Gareus (Heidelberg), Leo Greiner, Howard.
H. Wieman1STAR HFT CD1 Review, BNL, November 2009 STAR HFT PIXEL Detector WBS 1.2 Howard Wieman LBNL.
H. MatisTracking Upgrade Review – Dec. 7, SSD Update Howard Matis.
Simulation issue Y. Akiba. Main goals stated in LOI Measurement of charm and beauty using DCA in barrel –c  e + X –D  K , K , etc –b  e + X –B 
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
ILC Vertex Tracker Ladder Studies At LBNL M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley.
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
Howard MatisPixel A High Resolution Vertex Tracker for the STAR Experiment using Active Pixel Sensors and Recent work using APS Sensors F. Bieser,
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Leo Greiner TC_Int1 Sensor and Readout Status of the PIXEL Detector.
STAR RHIC AGS users meeting, May 30, Star Inner Tracking upgrade F. Videbaek STAR collaboration for the HFT upgrade group.
CAARI 2008 August 10-15, 2008, Fort Worth, Texas, USA STAR Vertex Detector Upgrade – HFT PIXEL Development Outline: Heavy Flavor Tracker at STAR PIXEL.
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
HFT PIXEL Detector Director’s review May-2009 Wieman 1.
Spiros Margetis (Kent State Univ.) for the STAR Collaboration STAR Heavy Flavor Tracker Bari, Italy 2014.
Aug. 4-9, 2005, QM2005, Budapest X.Dong, USTC 1 Open charm production at RHIC Xin Dong University of Science and Technology of China - USTC.
STAR Spin Related Future Upgrades STAR Spin Physics Program Current Capabilities Heavy Flavor Physics W Program Transverse Program Upgrades: Plans & Technologies.
1 Jim Thomas - LBL HFT Issues that may Bear on the Fate of the SSD & SVT presented by Jim Thomas 07/07/2006.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
1 HFT, a High Resolution Vertex Detector for STAR Wieman RNC LBNL Thursday, May 17, 2006.
1 STAR HFT Pixel Detector Howard Wieman Lawrence Berkeley National Lab.
1 The STAR Pixel Upgrade H. Wieman Heavy Quark Workshop LBNL 1-Nov-2007.
Recent Charm Measurements through Hadronic Decay Channels with STAR at RHIC in 200 GeV Cu+Cu Collisions Stephen Baumgart for the STAR Collaboration, Yale.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
G. Contin | The STAR Heavy Flavor Tracker (HFT) and Upgrade Plan Quark Matter 2015 – Kobe, Japan Session : Future Experimental Facilities,
1 Heavy flavor physics and  Vertex detector. 2 People involved RNC Group Howard Wieman Hans-Georg Ritter Fred Bieser (Lead Electronic Engineer) Howard.
Readout for the HFT at STAR. LG - STAR Upgrades Workshop Dec A Stand-alone Heavy Flavor Tracker for STAR Z. Xu Brookhaven National Laboratory,
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
Solid State Detectors for Upgraded PHENIX Detector at RHIC.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Leo Greiner IPHC beam test Beam tests at the ALS and RHIC with a Mimostar-2 telescope.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
1 Monolithic CMOS Detectors for Tracking and the Sticky Photo-Gate Wieman RNC LBNL 9-Feb-2005.
Outline Motivation The STAR/EMC detector Analysis procedure Results Final remarks.
Investigating latchup in the PXL detector Outline: What is latchup? – the consequences and sources of latchup – techniques to reduce latchup sensitivity.
1 HFT Wieman 11/6/ Outline  Development Status uMIMOSTAR pixel detectors uMIMOSA5 Electronic Readout uLadder mechanics uBeam pipe  Interface.
Heavy Flavor Physics in STAR Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
SPHENIX Mid-rapidity extensions: Additional Tracking system and pre-shower Y. Akiba (RIKEN/RBRC) sPHENIX workfest July 29,
LBNL Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Updates on vertex detector
Leo Greiner, Eric Anderssen, Howard Matis,
Requirements and Specifications for Si Pixels Sensors
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Presentation transcript:

Wieman: 1 STAR Silicon Micro Vertex Detector NSAC/DOE Review June 2, 2004

Wieman: 2 STAR People involved RNC Group –Howard Wieman –Hans-Georg Ritter –Fred Bieser (Lead Electronic Engineer) –Howard Matis –Leo Greiner –Fabrice Retiere –Eugene Yamamoto –Kai Schweda –Markus Oldenburg –Robin Gareus (Univ. of Heidelberg) LEPSI/IReS (Strasbourg) –Claude Colledani, Michel Pellicioli, Christian Olivetto, Christine Hu, Grzegorz Deptuch Jerome Baudot, Fouad Rami, Wojciech Dulinski, Marc Winter UCIrvine –Stuart Kleinfelder + students LBNL Mechanical Engineering –Eric Anderssen (consultation – ATLAS Pixels) –Design works BNL Instrumentation Div (consulting) Ohio State U –Ivan Kotov

Wieman: 3 STAR Heavy flavor in ultra-relativistic heavy-ion collisions Heavy Q pair formation How many? c/b quarks in matter Thermalization? Coalescence? Flow? Heavy flavor hadrons to detectors Heavy quark energy loss High p T Low Intermediate p T

Wieman: 4 STAR Heavy-quark energy loss p + p d + Au p + p d + Au p + p d + Au Heavy quarks radiate less energy than light quarks (prediction) –Yield of charm and beauty (leading) hadrons less suppressed –May be measured by D → X+e- and B → X+e- Without vertex information systematic error from background subtraction STAR preliminary (Luminosity upgrade adds capability for this case)

Wieman: 5 STAR Flow and thermalization Flow: spectra and v 2 Charm thermalization by chemistry J. Nagle, S. Kelly, M. Gyulassy, S.B. JN, Phys. Lett. B 557, pp e-p & e + e - Thermal f(c→D 0 ) f(c→D + ) f(c→D s + ) f(c→  c + )

Wieman: 6 STAR Measuring heavy flavor with the  Vertex detector Goals –Heavy flavor energy loss Remove background –Charm flow Precise D 0 spectra D 0 v 2 –Charm thermalization Yield of D +, D s +,  c + (challenging 3 body decays)   Vertex strategy Separate charm and beauty decay product from primary tracks Typically D 0 c  = 124  m   Vertex requirement: a very good vertex resolution Position resolution < 10  m Thickness < 0.2% of rad length to limit multiple scattering

Wieman: 7 STAR STAR Micro Vertex Detector Two layers –1.5 cm radius –4 cm radius 24 ladders –2 cm X 20 cm each –< 0.2% X 0 –~ 100 Mega Pixels

Wieman: 8 STAR Charm hadron reconstruction performances (figure of merit) System N events for 3  D 0 signal N events for 3  D + s signal In progress TPC+SVT12.6 M TPC+SVT+TOF2.6 M ~1,000 M (  +  + ) TPC+SVT+  Vertex100 K ~100 M (  +  + ) TPC+SVT+  Vertex+TOF10 K ~1 M (  +  + )

Wieman: 9 STAR Inner vertex detector in STAR New vertex detector centered in pointing detector, supported one end only End view showing 3 of 6 ladder modules Conceptual design focused on rapid insertion and removal while preserving spatial mapping

Wieman: 10 STAR Support: Thin stiff ladder concept Under development Tested for thermal distortion Wind tunnel vibration tests carbon composite (75  m) Young’s modulus 3-4 times steel aluminum kapton cable (100  m) silicon chips (50  m) 21.6 mm 254 mm

Wieman: 11 STAR TV Holography from ATLAS, LBNL Lucite wind tunnel Thin silicon ladder, tension support Laser light source Camera

Wieman: 12 STAR Capacitive Probe Measurement of Ladder Displacement and Vibration 1.6  m vibration Additional vibration measurements: High sensitivity accelerometer place of the STAR inner detector support structure

Wieman: 13 STAR Sensors: Active Pixel Sensors Advantages –Precise –Can be thin –Rather fast –Low power Disadvantages –Small signal –Not that fast –New Need R&D p-well n-well p-epi p-substrate 5-20  m CMOS electronic Analog & digital

Wieman: 14 STAR Sensors: 2 generations 2 nd Generation: Faster but need more R&D –R&D with UCIrvine and LEPSI/IRES –Improve charge collection Photogate, Active reset, … –Some digital processing Up to cluster-finder? 1 st Generation: 5-10 ms readout time –MIMOSTAR1 designed by LEPSI/IRES (Strasbourg) 640  640 pixel of 30  30  m 2 pitch –Purely analog –Parallel readout on-chip multiplexed to 2 kind of outputs 1  100MHz driver 10  10 MHz drivers

Wieman: 15 STAR Readout Analog to end of the ladder (~1 m away) –Challenge to drive analog signal at 100 MHz over 1m Piggy back chip –ADC and memory on a chip bounded to the pixel chip Analog Prototype with MIMOSA-5 Scheduled for Fall 04 –To develop fabrication methods with aluminum cables and new small components

Wieman: 16 STAR Summary The micro vertex greatly improves heavy flavor capability before and after luminosity upgrade Design work progressing on MAPS by LEPSI/IReS (the 1 st generation sensor for STAR inner vertex Developing Readout approaches R&D for 2 nd generation sensors by UCI/LBNL and LEPSI/IRes R&D mechanical concepts for detector support system Installation in 2008 or 2009

Wieman: 17 STAR backup

Wieman: 18 STAR Selected Detector Parameters Number of pixels98,304,00 Pixel dimension 30  m  30  m Detector chip active area 19.2 mm  19.2 mm Detector chip pixel array 640  640 Number of ladders24 Ladder active area 192 mm  19.2 mm Number of barrels2 Inner barrel (6 ladders)r = 1.5 cm Outer barrel (18 ladders)r = 4.5 cm Frame read time4 ms Pixel read rate, after zero suppression63 MHz Ladder % X %

Wieman: 19 STAR STAR Tracking Environment Luminosity Au + Au 1  Hz/cm 2 dN/d  (min bias) 170 min bias cross section10 barns interaction diamond size,  30 cm

Wieman: 20 STAR STAR Tracking Environment MVD Outer LayerMVD Inner Layer Radius4.5 cm1.5 cm Hit Flux4,300 Hz/cm 2 18,000 Hz/cm 2 Hit Density 4 ms Integration17/cm 2 72/cm 2 Projected Tracking , 1GeV/c180  m100  m Background Hit Assignment3.3%4.4% MVD Outer LayerMVD Inner Layer Radius4.5 cm1.5 cm Hit Density Au +Au Central Collision1.8/cm 2 7.4/cm 2 Projected Tracking , 1 GeV/c180  m100  m Background Hit Assignment0.3%0.5%

Wieman: 21 STAR MAPS Silicon Schedule (LEPSI/IReS) Jan – May ’04Design MIMOSTAR-1 Prototype Sept ‘04 – Jan ‘05Test MIMOSTAR-1 Sept ‘04 – Mar ‘05Design MIMOSTAR-2 final prototype Oct ’05MIMOSTAR-2 chips on final ladder prototype 2006Receive and test final sensors Detector installation 2008

Wieman: 22 STAR MIMOSTAR LEPSI/IReS for first generation STAR detector Based on MIMOSA-5, full wafer engineering run – significant readout infrastructure on chip LBNL test board works (Bieser and Gareus) –2 by 2 cm MIMOSA-5 chip –LBNL development using 4 commercial 50 MHz 14 bit ADCs MIMOSTAR Design –1.9cmX1.9cm active –30  mX 30  m pixels pixels/chip –Continuous frame read at 4-8ms per frame –52 mW per chip –Analogue readout options Single fast option 50 to100 MHz 10 at 10 MHz option

Wieman: 23 STAR Advanced APS designs for generation 2 Goal, increase speed with on detector chip zero suppress and by avoiding full frame readout Requires improvements in signal to noise –Noise sources KTC reset noise Fixed pattern noise, threshold variation, leakage current variation Programs at LEPSI/IReS Programs at UCI/LBNL (Stuart Kleinfelder, Yandong Chen) –Photogates –CDS clamp circuit –Active Reset

Wieman: 24 STAR Correlated Double Sample on chip Improved charge collection Photo gate purpose - addresses standard diode limitations P- P P+ Standard diode geometry Standard APS diode structure

Wieman: 25 STAR photo gate Large photo gate area for collection Transfer to small capacitance node Photo-gate geometry 20  m photo gate transfer gate drain

Wieman: 26 STAR Mechanical Rapid insertion and removal –Rapid replacement - insurance for beam excursion damage Minimum thickness: 50 Micron Si Detector – 50 Micron Si Readout chip Air cooling Composite beam pipe?

Wieman: 27 STAR Inner STAR model – SVT and micro-vertex

Wieman: 28 STAR Cam driven iris concept for fast insertion and removal

Wieman: 29 STAR 1 st layer radiation length fraction materialX 0 (cm) material thickness (  m) %X 0 Beryllium (beam pipe) Aluminum (conductors) Silicon (detector + readout) Kapton (cable) Adhesive Carbon Composite

Wieman: 30 STAR 50  m Silicon Thinned and polished wafers, a standard industrial process Thinned Silicon wire bonded to cable, both supported under tension “Wind tunnel” tests in preparation for testing cooling and vibration stability

Wieman: 31 STAR Silicon Cost Ladders per Wafer5 Ladders per Detector24 Yield60% Number of Detector Copies4 Number of Wafers32 Wafer Cost Each2-5 k$ Wafer Costs k$ Mask Cost k$ Total k$ 8 inch wafers 20 mm x 170 mm ladders

Wieman: 32 STAR Cuts tuned by optimizing Signal 2 /Background Daughter –Dca daughter > (200  m – momentum / 2GeV/c * 200  m) –Good quality TPC tracks D 0 –Decay length > 100  m –Cos(  ) > 0.96 –Dca between daughters < 100  m –|Minv-1.865| < 2  = 40 MeV –|cos(  *)| < 0.8 DCA daughter D0D0 Decay length K-K- ++ DCA between daughters

Wieman: 33 STAR Heavy quark energy loss Energy loss smaller for heavy than light quarks due to –Dead cone effect –Ter-Mikayelian effect Gluon radiation smaller in-medium than in vaccum (nucl-th/ ) Heavy quark allow differential study of energy loss path length = 5 fm path length = 2 fm Y axis ~  N(D 0 ) / N(  ) D. Kharzeev et al. Phys.Lett.B 519:1999,2001

Wieman: 34 STAR Trigger on e+/e- from open beauty (charm?) and clean up with mVertex B  e +/- + hadron + X –High pt e +/- triggered by EMC –Remove hadronic background by associating the e+/- with a hadron at a displaced vertex