Novembre 2008LCWS Chicago1 FCAL Report W. Lohmann, DESY Challenges and Design Sensors and Sensor Studies FE ASICS development Data Transfer, Infrastructure.

Slides:



Advertisements
Similar presentations
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
Advertisements

17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensors for the ILC forward calorimeter K. Afanaciev, Ch. Grah,
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensor materials K. Afanaciev on behalf of FCAL collaboration.
17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
March, 11, 2006 LCWS06, Bangalore, India Very Forward Calorimeters readout and machine interface Wojciech Wierba Institute of Nuclear Physics Polish Academy.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Radiation Hard Sensors for the BeamCal of the ILC C. Grah FCAL Collaboration 10 th ICATPP Conference, Villa Olmo.
I. Božović-Jelisavčić, LCWS10, Beijing, March LUMINOSITY MEASUREMENT AT ILC I. Bozovic-Jelisavcic (on behalf of the FCAL Collaboration)
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Octobre MPI Munich -energy calibration and resolution (end 2006) -Implementaion in LDC/Mokka (end 2006) -realistic simulation (2007) -background.
23-25 May 2012ILD workshop Kyushu University, Fukuoka, Japan Konrad Elsener, CERN FCAL Forward Instrumentation Part 1: Hardware, Testbeam (+ DBD) on behalf.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
14 December nd CARAT Workshop, GSI, Darmstadt1 Radiation hardness studies with relativistic electrons Sergej Schuwalow, Uni-HH / DESY On behalf of.
High Dose Irradiation of Possible FCAL Sensors at the S-DALINAC Ch.Grah Physics and Detector Meeting DESY HH,
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
LOI Planning The Very Forward Region Tom Markiewicz/SLAC Takashi Maruyama/SLAC Uriel Nauenberg/UCB SiD Collaboration Meeting, Boulder, CO 19 September.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
February 13. FCAL Workshop in Cracow W. Lohmann, DESY Bunch charge effects and diff. Bhabha cross section News From Theory and Generator Diamond.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
December 4, 2015KILC2012 Daegu Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest IFIN-HH & ISS, CERN, Univ. of Colorado, Cracow AGH-UST, Cracow IFJ-PAN,
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Octobre MPI Munich VFCAL Report W. Lohmann, DESY Laser alignment system Infrastructure for sensor diagnostics Sensor test facilities FE design Labs.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
3rd NoRDHia 1 TITLE INVESTIGATION OF DIAMOND SAMPLES UNDER HIGH DOSES OF ELECTROMAGNETIC IRRADIATION (at S-DALINAC) Wolfgang Lange, DESY Zeuthen.
February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
December 7, 2005DESY EUDET in FCAL VINCA, Belgrade Univ. of Colorado, Boulder, BNL, Brookhaven, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP,
August DESY-HH VFCAL Report W. Lohmann, DESY Infrastructure for sensor diagnostics FE Electronics Development Sensor test facilities Laser Alignment.
Status of Forward Calorimetry R&D: Report from the FCAL Collaboration Bruce A. Schumm Santa Cruz Institute for Particle Physics University of California,
The Very Forward Region of the ILC Detectors Ch. Grah FCAL Collaboration TILC 2008, Sendai 04/03/2008.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Albuquerque 1 Wolfgang Lohmann DESY On behalf of the FCAL collaboration Forward Region Instrumentation.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
February 29, 2016LCWS Arlington Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest IFIN-HH & ISS, CERN, Univ. of Colorado, Cracow AGH-UST & IFJ-PAN,
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Novembre 2008LCWS Chicago FCAL Report W. Lohmann, DESY Design FE Electronics Sensors and Sensor Tests Plans Labs involved: Argonne, BNL, Vinca Inst, Belgrade,
1/24 SiD FCAL Takashi Maruyama Tom Markiewicz SLAC TILC’09, Tskuba, Japan, April 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
LumiCal High density compact calorimeter at the ILC Wojciech Wierba Institute of Nuclear Physics PAS Cracow, Poland.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Luminosity and Beamtuning Calorimeters in the very Forward Region
FCAL R&D towards a prototype of very compact calorimeter
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
Testbeam plans for LEP instrumentation
Success is when preparation meets opportunity
R&D for ILC Very Forward Calorimeters
Report about “Forward Instrumentation” Issues
R&D of FCAL W. Lohmann, DESY, Simulation studies Sensors FE ASICs
Progress on ILC Forward Calorimetry by the FCAL Collaboration
Testbeam Results for GaAs and Radiation-hard Si Sensors
Conlusions of the Cracow Meeting
The Very Forward Region of the ILC Detectors
Radiation hard sensors for ILC forward calorimeter
Presentation transcript:

Novembre 2008LCWS Chicago1 FCAL Report W. Lohmann, DESY Challenges and Design Sensors and Sensor Studies FE ASICS development Data Transfer, Infrastructure Labs involved: Argonne, BNL, Vinca Inst, Belgrade, Bukharest Univ. of Colorado, Cracow UST, Cracow INP, JINR, Royal Holloway, NCPHEP, Prague(AS), LAL Orsay, Tuhoku Univ., Tel Aviv Univ., West Univ. Timisoara, Yale Univ. DESY (Z.) Associated: Stanford Univ. IKP Dresden Guests from : CERN

Novembre 2008LCWS Chicago2 Calorimeters in the very forward region (example ILD, 14 mrad ) LumiCal: -control of position on ~100  m level -control of the inner acceptance radius on ~  m level BeamCal: -radiation hard sensors (~10 MGy/year) Both: -compact (smallest possible Moliere radius) -readout after each BX Pair monitor: fast pixel device, harsh radiation conditions TPC LumiCal (Luminometer) ECAL HCAL BeamCal Challenges Pair monitor TPC QD0

Novembre 2008LCWS Chicago3 one more calorimerter, GamCal ~ 180 m from IP < 5 mrad aperture (beamstr photons) ‏ Thin foil to convert beamstrahlung photons EM calorimeter to detect converted electrons (positrons)

Novembre 2008LCWS Chicago4 Dedicated Functions BeamCal, Pair Monitor, GamCal Fast feedback for beam tuning, beam diagnostics using beamstrahlung; Beamparameter determination on percent level BeamCal Hermeticity, Electron veto at low angles, Mask for the inner detectors Local deposition from a single high energy electron Fast analog summation of pad-groups UCB BNL, DESY, JINR,

Novembre 2008LCWS Chicago5 Dedicated Functions e-e- 6.10m e+e+ e-e- IP e+e+ Precise Luminosity measurement Gauge process: e + e - e + e - (  ) L = N /  Count Bhabha events From theory Events , (rad) Fiducial volume for event counting Goal: Precision <10 -3 Cracow, Tel Aviv

Novembre 2008LCWS Chicago6 Beampipe Design Conical, central part Be Cylindrical, full Be, inner radius 5.5 cm (14 mrad crossing angle) Pro: minimum material in front of LumiCal Contra: vacuum, HOM, mechanics Pro: facilitates mechanics, vacuum Contra:material in front of LumiCal, pre- showering, electron measurement? Preshower particles Difference in the Bhabha count rate: (1 ± 2) x ; uncritical ! However: don’t use the ‘free space’ for other purposes! Possible solution Tel Aviv

Novembre 2008LCWS Chicago7 Radiation Dose and neutron fluxes RiRi RoRo ReRe 30 X 0 Suport tube (Iron) Absorber (W) Electronics Sensor Dead Area RToRTo GEANT4 model Electromagnetic dose for FE electronics: < 100 Gy /year Neutron flux inside sensors: Two different ‘physics lists’ neutrons/mm 2 /year (needs more detailed studies) Neutron flux through FE electronics: neutrons/mm 2 /year IFIN HH

Novembre 2008LCWS Chicago8 BeamCal Mechanics DESY

Novembre 2008LCWS Chicago9 Sensor R&D BeamCal pCVD diamonds: radiation hardness under investigation (e.g. LHC beam monitors, pixel detectors) advantageous properties like: high mobility, low ε R = 5.7, thermal conductivity GaAs: semi-insulating GaAs, doped with Sn and compensated by Cr produced by the Siberian Institute of Technology SC CVD diamonds: available in sizes of mm 2 Radiation hard silicon CVD: Chemical Vapor Deposition (courtesy of IAF) polycrystalline CVD diamond GaAs Single crystal CVD diamond DESY, JINR

Novembre 2008LCWS Chicago10 Sensor Tests Testbeam equipment for sensor performance studies using the EUDET telescope Detector under test Goal: precise measuremnt of the reponse of sCVD diamonds; Reference sensor Data analysis in progress

Novembre 2008LCWS Chicago11 Sensor irradiation tests pumping decrease depumping by UV Starting at about 50% of the sensor thickness. Ending at about 3 % CVD diamond sensors: Smooth degradation No increase of leakage current. GaAs: acceptable increase of the leakage current Ending at about 5%

Novembre 2008LCWS Chicago12 Sensor tests A new batch of GaAs sensors with Cr concentrations between and was recently delivered, Lab tests completed Sensors made of single crystal quartz and sapphire show promising sensitivity to ionising irradiation With source Without source Testbeam investigations in December ! DESY, JINR

Novembre 2008LCWS Chicago13 Sensor Production N-type silicon, p + strips, n + backplane, Crystal 0rientation 320 µm thickness ± 15 µm Strip pitch: 1800 µm Strip p + width: 1600 µm Strip Al width: 1700 µm Masks for prototypes ready (Hamamatsu) Prototype sensors just ordered In parallel: development of the fanout INPAS Cracow, Tel Aviv U.

Novembre 2008LCWS Chicago14 FE Electronics Tohoku Univ. ASIC for the pair monitor.25 mm TSMC technology # of pixel: 36 Pixel size: 400 x 400 mm2 Bump bonding to a sensor Prototype produced and successfully tested Pair monitor will use SoI technology, Sensor and readout ASIC embeddd in the same wafer; prototype 2009

Novembre 2008LCWS Chicago15 FE Electronics, LumiCal One FE ASIC will contain 32 – 64 channels, 10 bit One ADC will serve several channels (MC simulations not finished) AMS 0.35  m technology prototypes of the FE ASIC and ADC ASIC available, Tests of the FE ASICS so far promising. Cracow UST

Novembre 2008LCWS Chicago16 FE Electronics, LumiCal FE Asic: 8 channles per chip, 4 with MOS feedback resistance, 4 with passive Rf feedback ADC Asic: Pipeline architecture 10 bit resolution Maximum sampling rate 35 MHz First prototypes needed improvement, Submission ADC and DAC Sept Prototypes expected Nov. 2008

Novembre 2008LCWS Chicago17 FE Electronics, LumiCal First successful tests of the analog part with a single pad sensor DESY

Novembre 2008LCWS Chicago18 FE electronics, BeamCal Dedicated FE electronics for BeamCal, based on KPiX (see talk by Herbst in the DAQ session) Digital Buffering during bunch train, readout in between trains Fast analog adder for groups of pads used for fast feedback SLAC-Stanford 32 channels per chip all data is read out at 10 bits for physics purposes; Low latency output, sum of all channels is read out after each bx at 8 bits for beam diagnosis (fast feedback) Prototype in  m TSMC CMOS technology

Novembre 2008LCWS Chicago19 Data Transfer IKP TU Dresden LVDS links (few cm) 220 Mbits/s optical links (long distance) 650 Mbits/s First step: concept based commercial components Second step: dedicated prototype for a system test

Novembre 2008LCWS Chicago20 Infrastructure A dedicated silicon lab is created in Tel Aviv: Computer monitored prob station Computer supported I(V), C(V) measurements in preparation: clean room spectroscopic set-up A dedicated HEP lab building is designed for detector R&D, planned to be ready mid 2009

Novembre 2008LCWS Chicago21 Laser Position Monitoring Over short distances accuracies reached: Displacements in the x-y plane:  m Displacements in z direction:  m INP PAS Cracow

Novembre 2008LCWS Chicago22 Laser Position Monitoring Dedicated CMOS sensor Displacement calculations Scheme of the readout and monitoring electronics

Novembre 2008LCWS Chicago23 Conclusions Priority topics within FCAL: Large area radiation hard sensors for calorimetry (BeamCal) Precise position measurement of electromagnetic showers (Sensors for LumiCal) ASICS with high readout speed, large dynamic range, large buffering depth and low power dissipation, allowing fast feedback for luminosity optimisation Prototyping and test of more complex subsystems

Novembre 2008LCWS Chicago24 backup

Novembre 2008LCWS Chicago25 Test Beam Equipment and sensor tests exit window of beam line collimator (I Coll ) sensor box (I Dia, T Dia, HV) Faraday cup (I FC, T FC ) Setup used for radiation hardness tests at the SDALINAC accelerator TU Darmstadt Completed and more comfortable: more efficient use of the beam