Band-edge divergence and Fermi-edge singularity in an n-type doped quantum wire. Toshiyuki Ihara Ph.D student of Akiyama group in Institute for Solid State.

Slides:



Advertisements
Similar presentations
A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
Advertisements

Raman Spectroscopy A) Introduction IR Raman
Single wire laser ’ #5 C‘ excited by Two Ti:Sapphire lasers Toshiyuki Ihara ① : Motivation / experimental setup / Sample structure / PL and PLE.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
High Speed Circuits & Systems Laboratory Joungwook Moon
EL and PL of uncoated sample with arm-arm injection scheme By Shu-man Liu
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
A. Abdi, T. B. Hoang, S. Mackowski, L. M. Smith and H. E. Jackson Department of Physics, University of Cincinnati, Ohio J. M. Yarrison-Rice.
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Quantum Dots: Confinement and Applications
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Growth and Characterization of IV-VI Semiconductor Multiple Quantum Well Structures Patrick J. McCann, Huizhen Wu, and Ning Dai* School of Electrical and.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
ITOH Lab. Hiroaki SAWADA
Photochemistry And Photophysics Of Nanoparticles Brian Ellis.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.
Charge Carrier Related Nonlinearities
The authors gratefully acknowledge the financial support of the EPSRC High slope efficiency liquid crystal lasers designed through material parameter optimisation.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Absorption Spectra of Nano-particles
グラフェン量子ホール系の発光 量子ホール系の光学ホール伝導度 1 青木研究室 M2 森本高裕 青木研究室 M2 森本高裕.
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
05/07/18 Optical Characterization of High-Mobility Quantum Well with Low-density Modulation-Doping Toshiyuki Ihara Abstract. I measured PL and PLE spectra.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Terahertz waves base on SiGe Alloy NTU 林楚軒. Introduction Structure a.SiGe QW intersubband transition b.SiGe QW with dopant helping c.Si with dopant Summary.
Photoluminescence-excitation spectra on n-type doped quantum wire
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
T-shaped quantum-wire laser
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Optical absorption anomaly of one-dimensional electron gas in a doped quantum wire Toshiyuki Ihara.
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
Itoh Laboratory Masataka Yasuda
報告人 : 洪國慶. Outline INTRODUCTION EXPERIMENTAL DETAILS RESULTS AND DISCUSSION CONCLUSION REFERENCES 2.
Temperature and sample dependence of spin echo in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University Physics Department.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
長程光纖通訊光源材料 InGaAsN 之特性介紹與近代發展 Reporter: 陳秀芬 Adviser: 郭艷光 博士 Date: 2004/01/06 92 學年度第一學期半導體雷射期末報告.
New Sample I-V, PL & PLE Toshiyuki Ihara ’04 07/05.
O. Jambois, Optics Express, 2010 Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters Jeong-Min Lee
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
超平坦 GaAs 量子井戸の発光像 とスペクトル計測 Ji-Won Oh , Masahiro Yoshita , Hirotake Itoh , Hidefumi Akiyama, Loren Pfeiffer A , Ken West A Institute for solid state physics,
Electronic Properties of Si Nanowires Yun Zheng, 1 Cristian Rivas, Roger Lake, Khairul Alam, 2 Timothy Boykin, and 3 Gerhard Klimeck Deptartment of Electrical.
T-shaped quantum-wire laser M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, T. Ihara, and H. Akiyama Institute for Solid State Physics, Univ. of Tokyo.
ВСЕ О ТРИОНАХ Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Relation between photoluminescence and photoluminescence-excitation spectra in the linear response regime measured on two- dimensional electron gas T.
Conclusions References 1. A. Galimberti et al., Nucl. Instrum. Meth. A 477, (2002). 2. F. Capotondi et al., Thin Solid Films 484, (2005).
Controlled fabrication and optical properties of one-dimensional SiGe nanostructures Zilong Wu, Hui Lei, Zhenyang Zhong Introduction Controlled Si and.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
Tunable excitons in gated graphene systems
J.Kalkman, A.Tchebotareva, A.Polman, T.J.Kippenberg,
超平坦界面を有する GaAs(110)量子井戸の顕微分光
Nonlinear response of gated graphene in a strong radiation field
05/05/28 Optical Characterization of Stem Well with Low Density Modulation-Doping Toshiyuki Ihara Abstract. I measured PL and PLE spectra of low density.
Single wire laser ’ #5 C‘ Optical characterization
Gain Spectra in Photoexcited T-Shaped Quantum Wires
Presentation transcript:

Band-edge divergence and Fermi-edge singularity in an n-type doped quantum wire. Toshiyuki Ihara Ph.D student of Akiyama group in Institute for Solid State Physics, University of Tokyo and CREST, JST, Chiba , Japan ’06 EPFL Switzerland

Members in Akiyama Laboratory 秋山 英文 Hidefumi AKIYAMA 吉田 正裕 Masahiro YOSHITA 劉 舒曼 Liu Shu-man 安東 頼子 Yoriko ANDO 伊藤 弘毅 Hirotake ITOH 井原 章之 Toshiyuki IHARA 稲田 智志 Satoshi INADA 岡田 高幸 Takayuki OKADA 岡野 真人 Makoto OKANO 宗像 孝光 Takamitsu MUNAKATA

Recent research topics 1D many-body systems Firefly (Lightning bug) T-wire Laser Quantum wire laser action by electro- and optical-excitation Optical response of low-dimensional many-body systems Bioluminescence quantum-efficiency measurement

What is T-shaped quantum wire ? Benefit Size controllability High quality Weak point Small confinement Difficult fabrication T-shaped quantum wire is made of two quantum wells (Arm well & Stem well) grown by molecular beam epitaxy

Our experiments on quantum wires Micro-PL and resonant PLE measurements Waveguide transmission measurements Lasing by electro- and optical- excitation Single / Multi T-wire with optical waveguide n-type doped single T-wire with FET structure sample measurement

Our experiments on quantum wires Micro-PL and resonant PLE measurements Waveguide transmission measurements Lasing by electro- and optical- excitation Single / Multi T-wire with optical waveguide n-type doped single T-wire with FET structure sample measurement

Band edge and Fermi edge in the optical spectra “Band-edge peak” and/or “Fermi-edge peak” appears in the spectra !? Without many-body effectsWith Fermi-edge singularity effect G. D. Mahan, Phys. Rev. 153, 882 (1967). Both experimental and theoretical investigations have reported since early 90’s.

Sample structure of n-type doped T-wire < fabrication > MBE with cleaved edge overgrowth method < size of wire > 14 x 6nm x 4mm(single) < doping > ① Si modulation doping ② FET gate structure →tunable electron density < measurement > Temperature-elevated micro-PL spectra & resonant PLE spectra

Result at high electron density High electron density : 6x10 5 cm -1 Cryostat temperature : 5K (Estimated temperature : 10K) ’04 T. Ihara et. al. We observed the Fermi-edge absorption onset with small FES enhancement

Comparison with Oberli ’ s experiments D. Y. Oberli et al, Physica E 11, 224 (2001).

What if we change temperature and electron density ? Higher temperature Lower temperature Band-edge absorption ? Band gap renormalization ? Metal-Insulator crossover ? Bound states ? 1D screening ? Low density Band-edge absorption ? Fermi edge singularity ? Band edge & Fermi edge induced by 1D DOS and Pauli Blocking

Results : PL and PLE spectra at various temperature - Same energy with PL peak. - Good agreements with calculations. - Characteristic of 1D electron systems Temperature high low A sharp absorption peak (BE) appears. Fermi-edge absorption onset (FE) appears. Sharp absorption peak at 50K Band-edge absorption peak induced by 1D DOS divergence !! T=50K (k B T/E f ~ 1) non-degenerate 1DEG T=5K (k B T/E f ~ 0.1) degenerate 1DEG ※ Electron density : 6x10 5 cm -1

Results : PL and PLE spectra at various electron density at T=5K Sharp band-edge absorption appears at n e = 1.5x10 5 cm -1 ~ 3x10 5 cm -1 Discrete symmetrical peaks appear only at low densities ( n e < 1.5x10 5 cm -1 ) Electron density high low n e =6x10 5 cm -1 ~ 3x10 5 cm -1 degenerate 1DEG (k B T/E f < 0.5) -Fermi edge absorption onset -Band edge emission -Band gap renormalization n e =3x10 5 cm -1 ~ 1.5x10 5 cm -1 non-degenerate 1DEG (k B T/E f > 0.5) Sharp band-edge absorption n e < 1.5x10 5 cm -1 Discrete peaks of bound states

Summary Low-temperature PL and PLE spectra are studied in an n-type modulation-doped T-shaped single quantum wire with a gate to tune electron densities. With non-degenerate 1D electron gas, band-edge absorption exhibits a sharp band- edge-divergence of 1D density of states. When the dense 1D electron gas is degenerate at a low temperature, we observe a band-edge emission peak and a Fermi-edge absorption onset with small FES effect. Further investigations - Trion / Band-edge problem - PL and PLE measurement at lower temperature ( ~ 1K) - Contrast with 2D electron systems.