The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
Interaction among cosmic Rays, waves and large scale turbulence Interaction among cosmic Rays, waves and large scale turbulence Huirong Yan Kavli Institute.
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
Diffuse Emission and Unidentified Sources
Cosmic Rays High Energy Astrophysics
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
March 22, 2005Icecube Collaboration Meeting, LBL How guaranteed are GZK ’s ? How guaranteed are GZK ’s ? Carlos Pena Garay IAS, Princeton ~
Neutrinos and the origin of the cosmic rays TexPoint fonts used in EMF: AAA Walter Winter DESY, Zeuthen, Germany ICRC 2015 The Hague, Netherlands July.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
CHARGED COSMIC RAYS PHYSICS DETECTION OF RARE ANTIMATTER COMPONENTS LOW ENERGY PARTICLES (>GeV) HE ASTROPHYSICS.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
Topics on Dark Matter Annihilation
Determining the neutrino flavor ratio at the astrophysical source
The origin of Cosmic Rays: New developments and old puzzles
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Can dark matter annihilation account for the cosmic e+- excesses?
Haoning He(RIKEN/UCLA/PMO)
Neutrinos from Gamma-Ray Bursts
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Particle Acceleration in the Universe
Cosmic rays, γ and ν in star-forming galaxies
Predictions of Ultra - High Energy Neutrino fluxes
Shigeru Yoshida and Aya Ishihara
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton

The cosmic ray spectrum [From Helder et al., SSR 12]

Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic UHE X-Galactic [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00; Lemoine, J. Phys. 13] Source: Supernovae(?) Source? Lighter

The cosmic ray generation spectrum

UHE (> GeV= EeV)

UHE: Composition HiRes 2005 Auger 2010 HiRes 2010 (& TA 2011) [Wilk & Wlodarczyk 10]* [*Possible acceptable solution?, Auger collaboration 13]

UHE: Anisotropy & Composition Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [EW, Fisher & Piran 97] Biased (  source ~  gal for  gal >  gal ) [Kashti & EW 08] 98% CL; Consistent with LSS Anisotropy of Z at eV implies Stronger aniso. signal (due to p) at ( /Z) eV [ since: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z, p(E/Z) propagation = Z(E) propagation, n p >= n Z at the source.] Not observed  No high Z at eV [Kotera & Lemoine 08; Abraham et al. 08… Foteini et al. 11] [Lemoine & EW 09]

[EW 1995; Bahcall & EW 03] [Katz & EW 09]  2 (dN/d  ) Observed =  2 (dQ/d  ) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/d  ~(1+z) m  -  > eV: consistent with protons,  2 (dQ/d  ) =0.5(+-0.2) x erg/Mpc 3 yr + GZK UHE: Flux & Generation Spectrum ct eff [Mpc] GZK (CMB) suppression log(  2 dQ/d  ) [erg/Mpc 2 yr]

Intermediate E (10 6 GeV=1 PeV < E < EeV)

HE  : UHECR bound p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics For all known sources,   p <=1: If X-G p ’ s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

Bound implications: experiments 2 flavors, Fermi

IceCube (preliminary) detection 28 events, compared to 12 expected, above 50TeV; ~4  (cutoff at 2PeV?) 1/E 2 spectrum, 4x10 -8 GeV/cm 2 s sr Consistent with e :  :  =1:1:1 Consistent with isotropy [N. Whitehorn, IC collaboration, IPA 2013] New era in astronomy

IceCube (preliminary) detection 2 flavors,

IceCube’s detection: Some implications Unlikely Galactic: E 2   ~10 -7 (E 0.1TeV ) -0.7 GeV/cm 2 s sr [Fermi]  ~10 -9 (E 0.1PeV ) -0.7 GeV/cm 2 s sr XG distribution of sources,  2 (dQ/d  ) >=0.5x erg/Mpc GeV< E <10 9 GeV p,  2 (dQ/d  ) PeV-EeV ~  2 (dQ/d  ) >10EeV,   p(pp) >~1  Or:  2 (dQ/d  ) PeV-EeV >>  2 (dQ/d  ) >10EeV,   p(pp) <<1 & Coincidence Isotropic, 1:1:1 flavor ratio, E 2  ~4x10 -8 GeV/cm 2 s sr~E 2  50TeV<E<2PeV

Low E (1GeV < E < 1TeV)

Estimating the G-CR production rate CR production in the Galactic disk: Assuming CR production ~ SFR ~ SN rate, and using we have

Galactic CR propagation models? For all secondaries: For positrons: At ~20GeV: f rad ~0.3~f 10 Be Predictions for e + & p consistent with PAMELA & AMS observations. Positron anomalies? -Due to assumptions adopted RE CR propagation. -Reflect the absence of a basic principles model. [Katz, Blum, Morag & EW 10; Blum Katz & EW 13] -

Primary e+ sources DM annihilation [Hooper et al. 09] Pulsars [Kashiyama et al. 11]

The cosmic ray generation spectrum XG CRs XG ’s Galactic CRs (+ CRs~SFR)

Universal generation spectrum: Implications Natural: All CRs produced in galaxies, Rate ~ SFR [Loeb & EW 02; Parizot 05; Aublin et al. 05]   2 (dQ/d  ) =0.5(+-0.2) x erg/Mpc 3 yr If so, Galactic CR density 10 7 GeV  Transient sources, currently “dim state” Implications/ Consistency checks: - E transient > E Galaxy (>10 7 GeV CRs)~ erg, consistent with strong explosions (SNe, GRBs) - Starburst emission

The eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Lovelace 76; EW 95, 04; Norman et al. 95]

GRB: L Sun, M BH ~1M sun, M~1M sun /s,  ~ AGN: L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~ Source physics challenges Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms [Reviews: Lemoine 13; Kirk 08, 13] [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 05; Khangulyan et al 07]

UHE: Bright transients Electromagnetic acceleration in astrophysical sources requires L>L B >10 46 (  2 /  ) (  /Z eV) 2 erg/s  No steady sources at d<d GZK  Transient Sources If electrons are accelerated with protons, transients should also be bright in X-ray/  The rate of such flares is much too low to account for the CR flux unless L> >10 50 erg/s  >10 50 erg/s flares or Inefficient e-acceleration (“dark flares”) [EW & Loeb 09] [Lovelace 76; EW 95, 04; Norman et al. 95]

High energy ’s from Star Bursts Starburst galaxies –{Star formation rate, density, B} ~ 10 3 x Milky way Most stars formed in z>1.5 star bursts –CR e’s lose all energy to synchrotron radiation, CR p’s likely lose all energy to  production - If p’s lose all energy & radio bgnd dominated by starbursts: [Quataert et al. 06] Synchrotron radio  (~1GeV) calibration [Loeb & EW 06]

Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81

[Loeb & EW 06] Starburst galaxies: emission Radio & bgnd’s consistent with  2 (dQ/d  )~10 44 erg/Mpc 3 yr in galaxies, ~SFR,   p(pp) >~1

Are SNRs the low E CR sources? UHE, Intermediate E: Not yet identified Low E- SuperNova Remnants? [Baade & Swicky 34] So far, no clear evidence [  Gallant’s talk]. Electromagnetic observations- ambiguous (e.g. TeV  e - I.C. [Katz & EW 08; Butt et al. 08] ). [e.g. Butt 09; Helder et al., SSR 12]

Summary The identity of the CR source(s) is still debated. Many open Q’s RE candidate source(s) physics [accreting BHs].  2 (dQ/d  ) ~ erg/Mpc 3 yr at all energies. Suggests: CRs of all E produced in a rate ~ SFR, by transients releasing ~ erg. IceCube detects XG n’s,  ~  WB at 50TeV—1PeV - A new era in astronomy. - Consistent with the predictions of the ‘single source’ hypothesis, for   p(pp) >~1 in StarBursts.

A new era in HE ’ s IceCube ’ s sensitivity meets the minimum requirements for detection of XG sources. Preliminary detection of 50TeV-1PeV ’s. Bright transients are the prime targets. Coordinated wide field EM transient monitoring crucial: - Enhance detection sensitivity, - Identify sources, Enable physics output. XG detection rate limited (<~10/yr). Detection of a handful of ’ s from EM identified sources may resolve outstanding puzzles: - Identify UHECR (& G-CR) sources, - Resolve open “ cosmic-accelerator ” physics Q ’ s (related to BH-jet systems, particle acc., rad. mechanisms), - Constrain physics, LI, WEP.

Back up slides

Transient sources: GRB ’ s If: Baryonic jet Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

IceCube’s limits [Hummer, Baerwald, and Winter 12; see also Li 12; He et al 12] IC40+59: No ’ s for ~200 GRBs (~2 expected). IC is achieving relevant sensitivity ! IC analyses overestimate GRB flux predictions, and ignore astrophysical uncertainties:

G-XG Transition at ~ eV: Fine tuning [Katz & EW 09] Inconsistent spectrumG eV

UHECR sources: Suspects Constraints: - L>10 12 (  2 /  ) L sun,  > (L 52 ) 1/10 (  t/10ms) -1/5 -  2 (dQ/d  ) ~ erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  L  ~ L Sun >10 12 (  2 /  ) L sun = (  / ) 2 L sun   ~ (L 52 ) 1/10 (  t/10ms) -1/5  2 (dQ/d  )  ~ erg* /Mpc 3 yr = erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Hidden ” (proton only) AGN * L~ L Sun,  t~1month flares If e - accelerated: X/  observations  rare L>10 17 L sun [Blandford 76; Lovelace 76] [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08] [EW & Loeb 09]

Bound implications: I. AGN models BBR05 “Hidden” ( only) sources Violating UHECR bound

Single flavor Multi flavor [Anchordoqui & Montaruli 09]

(Correct) detailed CR propagation models must agree with simple, analytic results derived from  sec Example: Diffusion models with {D~K 0  , box height L} reproduce data for parameter combinations shown in fig. [Maurin et al. 01] Trivial explanation: [Katz, Blum & EW 09] Require  sec (  =35GeV) to agree with the value inferred from B/C  sec =[3.2,3.45,3.9] g/cm 2 [green, blue, red]