Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid, Spain Cis-METHYL VINYL ETHER: THE ROTATIONAL SPECTRUM UP TO 600 GHz Lucie Kolesniková, Adam M. Daly, José L. Alonso International Symposium on Molecular Spectroscopy, June 16 20, 2014 Champaign-Urbana, Illinois, USA
Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995) CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH
Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) ; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530. CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH detected b tentatively detected c detected d
Gas-phase reactions leading from alcohols to ethers a CH 3 OH Introduction and motivation CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) ; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530; e B.E. Turner, A.J. Apponi, ApJ 561 (2001) L207-L210. detected b tentatively detected c detected d CH 2 CHOH detected e CH 3 OCHCH 2 in the ISM ??? data only up to 40 GHz
Experimental details Double pass configuration (50 – 170 GHz)
Experimental details Double pass configuration (50 – 170 GHz)
Experimental details Double pass configuration (50 – 170 GHz)
Experimental details Double pass configuration (50 – 170 GHz)
Experimental details Double pass configuration (50 – 170 GHz)
Experimental details Single pass configuration (170 – 1000 GHz)
Experimental details Single pass configuration (170 – 1000 GHz)
Experimental details Single pass configuration (170 – 1000 GHz) 50 – 600 GHz room temperature 20 bar
Rotational spectra and analysis a = (2) D b = (2) D
Rotational spectra and analysis a = (2) D b = (2) D 23 (A’’) 24 (A’’) 16 (A’) 24 234 cm 1 23 244 cm 1 16 327 cm 1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) Vib. modes below 400 cm 1 : a
Rotational spectra and analysis
ground state v 24 = 1 v 23 = 1v 16 = 1
Rotational spectra and analysis cent (MHz) (MHz)
Rotational spectra and analysis G.S. 1 0 v 24 = 1 1 0 v 23 = 1 1 0 v 16 = 1 1 0 cent (MHz) (MHz)
Rotational spectra and analysis Ground state > transitions (J’’ = 69, K a ’’ = 25) Watson’s A-reduced Hamiltonian (I r -representation) v 24 = 1 and v 23 = 1 excited states failure of the Watson’s semirigid Hamiltonian IR data a : E = E 23 E 24 10.5 cm 1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982)
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss , 1 16
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss , 1 16 K a = 0 0, 1 K a = 0 0, 1 1, , 3 3, 4
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss , 1 16 K a = 0 0, 1 K a = 0 0, 1 1, , 3 3, 4
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states 23 (A’’) 24 (A’’) C s symmetry (v 24 = 1) (v 23 = 1) (J c ) = A’ c-type Coriolis Fermi-type H C (24,23) = iG c J c + F ab (J a J b + J b J a ) + … H F (24,23) = W F + W F J J 2 + W F K J a 2 +W ± (J b 2 – J c 2 ) + …
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states > transitions J’’ = 61, K a ’’ = 10 for v 24 = 1 and J’’ = 59, K a ’’ = 6 for v 23 = 1 E = (3) (cm 1 )
Rotational spectra and analysis v 23 = 1, K a = 1 v 23 = 1, K a = 0 v 24 = 1, K a = 2 v 24 = 1, K a = 3
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches transitions affected by the perturbations with v 24 = 1 state v 24 = 1 state : only those affected by perturbations with v 23 = 1 state b R. Meyer, T.K. Ha, M. Oldani, W. Caminati, The Journal of Chemical Physics 86 (1987)
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1
Rotational spectra and analysis v 16 = 1 excited state isolated state > 500 transitions (J’’ = 69, K a ’’ = 25) A-reduction (I r -representation) 16 (A’)
Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz) (1) (6) (3) (9) B(MHz) (3) (1) (5) (2) C(MHz) (3) (1) (1) (9) JJ (kHz) (2) (1) (4) (1) JK (kHz)– (1)– (2)– (8)– (2) KK (kHz) (3) (7)49.74 (6)56.44 (1) JJ (kHz) (7) (7) (2) (7) KK (kHz) (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] … JK (mHz)71.9 (1)[71.9] 160 (1) KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] (8) JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) (1) (cm –1 ) (3) GcGc (MHz) [1381] GcJGcJ (MHz) (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) – (2) W±W± (MHz) (5) G c KK (MHz) (2) fit (kHz)
Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz) (1) (6) (3) (9) B(MHz) (3) (1) (5) (2) C(MHz) (3) (1) (1) (9) JJ (kHz) (2) (1) (4) (1) JK (kHz)– (1)– (2)– (8)– (2) KK (kHz) (3) (7)49.74 (6)56.44 (1) JJ (kHz) (7) (7) (2) (7) KK (kHz) (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] … JK (mHz)71.9 (1)[71.9] 160 (1) KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] (8) JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) (1) (cm –1 ) (3) GcGc (MHz) [1381] GcJGcJ (MHz) (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) – (2) W±W± (MHz) (5) G c KK (MHz) (2) fit (kHz) New laboratory measurements Precise spectroscopic constants Search for cis-methyl vinyl ether in the ISM
Acknowledgements …and all the members of the CSD Molecular Astrophysics Grant VA070A08 Grants CTQ , AYA and AYA