Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid,

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
WH04 NUMERICAL AND EXPERIMENTAL ASPECTS OF DATA ACQUISITION AND PROCESSING IN APPLICATION TO TEMPERATURE RESOLVED 3-D SUB-MILLIMETER SPECTROSCOPY FOR ASTROPHYSICS.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.
Laboratory characterization and astrophysical detection in Orion KL of higher excited states of vinyl cyanide Alicia Lopez, a Belen Tercero, a Jose Cernicharo,
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
60th OSU International Symposium on Molecular Spectroscopy TF03 The millimeter-wave rotational spectrum of lactic acid Zbigniew Kisiel, Ewa Białkowska-Jaworska,
65th OSU International Symposium on Molecular Spectroscopy RH14.
Molecular Spectroscopy Symposium June 2009 The Submillimeter Spectrum of the Ground Torsional State of CH 2 DOH J.C. PEARSON, C.S. BRAUER, S.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
20 June st International Symposium on Molecular SpectroscopyPetkie – TG03-p1 The Millimeter and Submillimeter-wave Spectrum of the , 6 1.
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2 CN Adam M. Daly, John C. Pearson, Shanshan Yu, Brian.
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
The Millimeter- and Submillimeter-Wave Spectrum of Propenal A. M. DALY, C. BERMÚDEZ, L. KOLESNIKOVÁ, AND J. L. ALONSO Grupo de Espectroscopia Molecular.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
Molecular Spectroscopy Symposium June 2010 Can the Inversion-Vibration-Rotation Problem in the 4 and 2 2 States of NH 3 be solved to Experimental.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
Update of the analysis of the pure rotational spectrum of excited vibrational states of CH 3 CH 2 CN Adam Daly, John Pearson, Shanshan Yu, Brian Drouin.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
The complete rotational spectrum of CH 3 NCO up to 376 GHz Zbigniew Kisiel, a Lucie Kolesnikova, b Jose L. Alonso, b Ivan R. Medvedev, c Sarah Fortman,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
A NUCLEOSIDE UNDER OBSERVATION IN THE GAS PHASE: A ROTATIONAL STUDY OF URIDINE I. PEÑA, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada.
Further analysis of the laboratory rotational spectrum of CH3NCO
MILLIMETRE-WAVE SPECTRUM OF ANTI-13C1 AND 13C2 ISOTOPOLOGUES OF ETHANOL AND APPLICATIONS TO RADIO ASTRONOMY AURELIA BOUCHEZ, ADAM WALTERS, SANDRINE BOTTINELLI,
International Symposium on Molecular Spectroscopy
The microwave spectrum of lactaldehyde, the simplest chiral sugar.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
SEVEN CONFORMERS OF PIPECOLIC ACID IDENTIFIED IN THE GAS PHASE
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
The Rotational Spectrum of cis- and trans-HSSOH
Far Infrared Spectroscopy of Anti-Vinyl Alcohol
THE STRUCTURE OF PHENYLGLYCINOL
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
62nd OSU International Symposium on Molecular Spectroscopy WG10
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid, Spain Cis-METHYL VINYL ETHER: THE ROTATIONAL SPECTRUM UP TO 600 GHz Lucie Kolesniková, Adam M. Daly, José L. Alonso International Symposium on Molecular Spectroscopy, June 16  20, 2014 Champaign-Urbana, Illinois, USA

 Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995) CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH

 Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) ; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530. CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH detected b tentatively detected c detected d

 Gas-phase reactions leading from alcohols to ethers a CH 3 OH Introduction and motivation CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) ; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530; e B.E. Turner, A.J. Apponi, ApJ 561 (2001) L207-L210. detected b tentatively detected c detected d CH 2 CHOH detected e CH 3 OCHCH 2 in the ISM ??? data only up to 40 GHz

Experimental details Double pass configuration (50 – 170 GHz)

Experimental details Double pass configuration (50 – 170 GHz)

Experimental details Double pass configuration (50 – 170 GHz)

Experimental details Double pass configuration (50 – 170 GHz)

Experimental details Double pass configuration (50 – 170 GHz)

Experimental details Single pass configuration (170 – 1000 GHz)

Experimental details Single pass configuration (170 – 1000 GHz)

Experimental details Single pass configuration (170 – 1000 GHz) 50 – 600 GHz room temperature 20  bar

Rotational spectra and analysis  a  = (2) D  b  = (2) D

Rotational spectra and analysis  a  = (2) D  b  = (2) D 23 (A’’) 24 (A’’) 16 (A’) 24  234 cm  1 23  244 cm  1 16  327 cm  1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) Vib. modes below 400 cm  1 : a

Rotational spectra and analysis

ground state v 24 = 1 v 23 = 1v 16 = 1

Rotational spectra and analysis cent (MHz)  (MHz)

Rotational spectra and analysis G.S. 1  0 v 24 = 1 1  0 v 23 = 1 1  0 v 16 = 1 1  0 cent (MHz)  (MHz)

Rotational spectra and analysis  Ground state  > transitions (J’’ = 69, K a ’’ = 25)  Watson’s A-reduced Hamiltonian (I r -representation)  v 24 = 1 and v 23 = 1 excited states  failure of the Watson’s semirigid Hamiltonian  IR data a :  E = E 23  E 24  10.5 cm  1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982)

Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss , 1 16

Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss , 1 16 K a = 0 0, 1 K a = 0 0, 1 1, , 3 3, 4

Rotational spectra and analysis E red = E  E 24  J(J + 1)(B + C)/2 E red (cm  1 ) ss , 1 16 K a = 0 0, 1 K a = 0 0, 1 1, , 3 3, 4

Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states 23 (A’’) 24 (A’’) C s symmetry  (v 24 = 1)   (v 23 = 1)   (J c ) = A’ c-type Coriolis Fermi-type H C (24,23) = iG c J c + F ab (J a J b + J b J a ) + … H F (24,23) = W F + W F J J 2 + W F K J a 2 +W ± (J b 2 – J c 2 ) + …

Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states > transitions J’’ = 61, K a ’’ = 10 for v 24 = 1 and J’’ = 59, K a ’’ = 6 for v 23 = 1  E = (3) (cm  1 )

Rotational spectra and analysis v 23 = 1, K a = 1 v 23 = 1, K a = 0 v 24 = 1, K a = 2 v 24 = 1, K a = 3

Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states  V 3 = 1256 cm –1 b  v 23 = 1 state: higher K a, Q-branches transitions affected by the perturbations with v 24 = 1 state  v 24 = 1 state : only those affected by perturbations with v 23 = 1 state b R. Meyer, T.K. Ha, M. Oldani, W. Caminati, The Journal of Chemical Physics 86 (1987)

Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1

Rotational spectra and analysis  v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1

Rotational spectra and analysis  v 16 = 1 excited state  isolated state  > 500 transitions (J’’ = 69, K a ’’ = 25)  A-reduction (I r -representation) 16 (A’)

Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz) (1) (6) (3) (9) B(MHz) (3) (1) (5) (2) C(MHz) (3) (1) (1) (9) JJ (kHz) (2) (1) (4) (1)  JK (kHz)– (1)– (2)– (8)– (2) KK (kHz) (3) (7)49.74 (6)56.44 (1) JJ (kHz) (7) (7) (2) (7) KK (kHz) (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] …  JK (mHz)71.9 (1)[71.9] 160 (1)  KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] (8)  JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) (1) (cm –1 ) (3) GcGc (MHz) [1381] GcJGcJ (MHz) (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) – (2) W±W± (MHz) (5) G c KK (MHz) (2)  fit (kHz)

Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz) (1) (6) (3) (9) B(MHz) (3) (1) (5) (2) C(MHz) (3) (1) (1) (9) JJ (kHz) (2) (1) (4) (1)  JK (kHz)– (1)– (2)– (8)– (2) KK (kHz) (3) (7)49.74 (6)56.44 (1) JJ (kHz) (7) (7) (2) (7) KK (kHz) (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] …  JK (mHz)71.9 (1)[71.9] 160 (1)  KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] (8)  JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) (1) (cm –1 ) (3) GcGc (MHz) [1381] GcJGcJ (MHz) (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) – (2) W±W± (MHz) (5) G c KK (MHz) (2)  fit (kHz) New laboratory measurements Precise spectroscopic constants Search for cis-methyl vinyl ether in the ISM

Acknowledgements …and all the members of the CSD Molecular Astrophysics Grant VA070A08 Grants CTQ , AYA and AYA