Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, 064504 (2011) Kitaoka Lab. M1 Ryuji Michizoe.

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Ferromagnetism and the quantum critical point in Zr1-xNbxZn2
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Semiconductors n D*n If T>0
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
The Three Hallmarks of Superconductivity
Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA.
Eric Bauer Los Alamos National Laboratory Collaborators: J. Sarrao, J. Thompson, L. Morales, N. Curro, T. Caldwell, T. Durakiewicz, J. Joyce, A. Balatsky,
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Magnetic transition in the Kondo lattice system CeRhSn2
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
How does Superconductivity Work? Thomas A. Maier.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Michael Browne 11/26/2007.
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
History of superconductivity
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
The cerium based ‘115’ materials, CeMIn 5 (M = Co, Rh, Ir), are highly unconventional metals that can display superconductivity, magnetism, or, as we found,
Superconducting properties in filled-skutterudite PrOs4Sb12
Self-Organizations in Frustrated Spinels Seung-Hun Lee National Institute of Standards and Technology.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Magnetism on the verge of breakdown H. Aourag Laboratory for Study and Prediction of Materials URMER; University of Tlemcen  What is magnetism?  Examples.
Superconductivity and Superfluidity PHYS3430 Professor Bob Cywinski “Superconductivity is perhaps the most remarkable physical property in the Universe”
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
P. M. Grant Superconductivity 101 Superconductivity Workshop Charlotte, 24 May 1999 Superconductivity 101 A Primer for Engineers Paul M. Grant
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments.
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Quantum Criticality in Magnetic Single-Electron Transistors T p Physics of non-Fermi-liquid Metals Qimiao Si, Rice University, DMR Quantum criticality.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Lecture schedule October 3 – 7, 2011
Superconductivity and magnetism in iron-based superconductor
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Non-Fermi liquid behavior with and without quantum criticality in Ce 1−x Yb x CoIn 5 Carmen C. Almasan, Kent State University, DMR One of the greatest.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computer Science.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
Qimiao Si Rice University
Magnetism on the verge of breakdown
Kondo Effect Ljubljana, Author: Lara Ulčakar
Electrical resistance
How might a Fermi surface die?
Where are the superconductors?
Presentation transcript:

Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe

Contents ・ Introduction - History of Superconductivity - Heavy fermion system ・ Results ・ Summary

under high pressure SmO 0.9 F 0.11 FeAs LaO 0.89 F 0.11 FeAs LaOFeP Hg-Ba-Ca-Cu-O () Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O Y-Ba-Cu-O MgB 2 NbGe NbN NbC Nb Pb high-T c cuprate metal iron-based system SC transition temperature-T c (K) Year Hg La-Ba-Cu-O Discovery of superconducting phenomenon High-T c cuprate superconductor 2006 Iron-based high-T c superconductor History of Superconductivity(SC) 1979 Heavy fermion superconductor CeCu 2 Si 2 heavy fermion system PuCoGa 5

UPt 3 UPd 2 Al 3 CeCu 2 Si 2 CePd 2 Si 2 CeRh 2 Si 2 CeIn 3 CeRhIn 5 PrOs 4 Sb 12 PuCoGa 5 etc f electrons Heavy fermion compounds n(r)n(r) r 4f4f 5p5p 5d5d 6s6s

++ ff + f ++ ff + f Heavy fermion state Normal metal +++ +++ Heavy fermion state c-f hybridization conduction electron

J cf Polarization The interplay between two 4f electrons mediated by conduction electrons Heavy fermion system Heavy fermion system RKKY interaction Conduction electron 4f electron Magnetic Order

Heavy fermion system Heavy fermion system 4f and conduction electrons form a spin-singlet state Kondo effect J cf Conduction electron 4f electron Fermi Liquid

T K ∝ W exp(-1/J cf D(ε F )) T RKKY ∝ D(ε F ) J cf 2 Phase Diagram of HF system AFM : antiferromagnetism HF : heavy fermion state QCP : quantum critical point

Kondo effect 4f electron Kondo effect Conduction electron

P dependence of T max Above T max Incoherent Kondo scattering Below T max Coherent Kondo scattering

T max shifts to high T P dependence of T max T max ∝ T K

Resistivity of Ce 2 PdIn 8 P decreases T c 1 bar T c ~ 0.7 K

The P dependence of T C P suppresses SC P ~ 21 kbar SC disappears

Non-Fermi-liquid behavior Fermi-liquid ρ(T ) = ρ 0 + AT 2 ρ(T ) = ρ 0 + AT n (n < 2) n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid Non-Fermi-liquid

P dependent values of n, A, ρ 0 ρ(T ) = ρ 0 + AT n n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid A ∝ T K -2

P dependent values of n, A, ρ 0 ρ(T ) = ρ 0 + AT n n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid AF spin fluctuation is supressed by increasing P V. A. Sidorov et al., PRL (2002)

SC may be associated with AF spin fluctuation The relationship between SC and AF spin fluctuation

non-Fermi-liquid Fermi-liquid T FL : Fermi-liquid temperature Field dependence of resistivity Below H c2 = 2.5 T ρ(T ) ∝ AT Above H c2 = 2.5 T ρ(T ) ∝ AT 2 n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid

T FL increases with rising field Fermi-liquid is recovered at strong magnetic fields Field dependence of resistivity

Field dependent values of n, A, ρ 0 near H c2 n : jump to n = 2 A : maximum ρ 0 : minimum AF spin fluctuations associated with a QCP Fermi-liquid ρ(T ) = ρ 0 + AT n H c2 n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid

Summary H c2 n = 1 : 2D antiferromagnetic spin fluctuation n = 1.5 : 3D antiferromagnetic spin fluctuation n = 2 : Fermi-liquid SC in Ce 2 PdIn 8 may be mediated by the AF spin fluctuations

END

H. Fukazawa et al., PHYSICAL REVIEW B 86, (2012) Ce 2 PdIn 8

Heavy fermion system Heavy fermion system (RKKY:Rudermann-Kittel-Kasuya- Yoshida) Magnetic OrderFermi Liquid Conduction electron 4f electron RKKY interaction The interplay between two 4f electrons mediated by conduction electrons 4f electron Kondo effect 4f and conduction electrons form a spin- singlet state. Conduction electron heavy fermion system : 重い電子系

field dependence of the resistivity at 1 bar μ 0 H < 3 T T max ⇒ no change μ 0 H > 3 T T max ⇒ toward lower temperature suppress spin fluctuation

Kondo interaction strength(C K ) C K decreases with P C k : Kondo interaction strength

C K ~ J 3 N(E F ) 2 J : hybridization N(E F ) : density of states at Fermi level P enhances J N(E F ) strongly diminishes C K decreases P dependence of C K C K decreases with P but