Mitglied der Helmholtz-Gemeinschaft PAX Status and future plan June 26, 2012 | Alexander Nass
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina2 Overview COSY PAX
Mitglied der Helmholtz-Gemeinschaft 2006 transport of the HERMES polarized target (Atomic Beam Source (ABS) and Breit-Rabi Polarimeter (BRP)) to Jülich rebuilding of the ABS and BRP for the use at COSY / AD and design & construction of the target chamber Construction of an openable storage cell 2009 Installation of the low-β section, commissioning 2010 Installation of the target section at COSY, commissioning Design, construction and installation of the NEG pump attached to the target chamber 2011 transverse Spin Filter experiment at COSY June 26, 2012SPIN Physics Workshop in Gatchina3 History
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina4 The polarized target Production of a polarized atomic beam by an ABS Increase of the target density by means of a storage cell Analysis of target polarization by a BRP and TGA Calibration of the BRP by pp-scattering data ABS BRP The polarized target in LKW-Schleuse
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina5 The target chamber Accomodation of the (openable) storage cell and multipurpose detector in a compact design Support of the target holding field coils High pumping speed for target gas Fast shut-off valves to separate and protect COSY vacuum Large flanges to install the complete detector / target cell setup in one operation on a rail system Fixed flow limiters to reduce gas flow into the adjacent sections
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina6 The (openable) storage cell Storage cell necessary to increase target gas density up to atoms/cm 2 Storage cell walls should suppress recombination and depolarization Openable storage cell to allow the uncooled AD beam to pass Teflon foil walls to detect low energy recoils and suppress recombination and depolarization Fixed cell used in the COSY experiments due to problems with the density in the openable cell
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina7 The low-β section Low- β section necessary to increase the acceptance angle to about 6 mrad Small diameter COSY proton beam allows the use of a storage cell and therefore an increased filtering rate
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina8 Commissioning of the low-β section and machine development Injection of COSY beam through the fixed cell possible Using frame system acceptance angle measured to be 6.1 mrad Established sufficient long beam lifetimes > 7000s without target gas with protons at the desired energy of 49.3 MeV The frame system
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina9 The NEG pump High pumping speed in the target chamber necessary to reduce the pressure of the unpolarized H 2 / D 2 gas in the target chamber and adjacent beam line sections Therefore allowing longer beam lifetimes of the COSY proton beam Commercially available NEG cartridges mounted into a bakeable stainless steel box Box is closeable with a jalousie to protect the target cell and detector from the heat when NEG is activated (T=250…400 ° C) Measurements during the spin filter beam time showed pumping speeds of l/s
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina10 Installation at COSY Installation of the target section in COSY in summer 2010 Modular system to remove and install the target quickly One support structure for ABS, BRP and target chamber with NEG pump Rail system for installation of the flange with target cell and future detector
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina11 Density of the polarized target gas Intensity measurement of the ABS using an absolute baratron pressure measurement in the center on the storage cell in comparision with a calibrated flux from an unpolarized gas feed system I H2 = (3.0±0.1)·10 16 H 2 /s I H1 = (6.1±0.3)·10 16 H/s
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina12 Polarization of the target gas
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina13 Transverse Spin Filtering at COSY For more information see talk of D.Oellers Successful spin filter experiment in autumn weeks of data taking All components worked well without major problems at a high performance level Preliminary result for the spin filtering cross section for pp interaction Result is in good agreement with the theoretical predictions and confirms the present understanding of the underlying processes
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina14 Future plan September 2012 TRIC test experiment using the PAX-target October 2012 Removal of the PAX-target from COSY ring Modification and commissioning of the polarized internal target for running with H and D Design and construction of a multipurpose detector 2013 Installation of the Siberian Snake at COSY PAX site for ANKE experiment(s) with longitudinal beam polarization 2014 Installation of the Siberian Snake at COSY ANKE site and reinstallation of the PAX target with detector Longitudinal Spin Filter experiment at COSY TRIC and pd breakup experiments with PAX 20?? Spin filtering with antiprotons at AD/CERN or FAIR
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina15 Modifications on the polarized target TRIC and pd breakup need D target Preparation of hardware and software for D Comissioning of target section with D outside COSY p filtering requires H & D in short sequence Prototype of new type RF cavity (dual cavity) was produced and tested with RF- generator bridge Has to be tested with H / D beam Hydrogen Deuterium
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina16 The Multipurpose Detector For more information see talk of C.Weidemann Silicon strip detector with 3 layers Readout electronics connected directly in vacuum Liquid cooling system for detectors and electronics Openable cell included in the design Complete setup attached to one flange of the target chamber
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina17 Openable Flow Limiters Flow limiters necessary to reduce flow of hydrogen (target) gas into adjacent beam tubes with high β -functions of the (anti)proton beam High gas pressures lead to reduced beam lifetimes of the (anti)proton beam Openable flow limiters necessary since uncooled (anti)proton beam is large (up to 100mm diameter) After beam cooling (diameter <10mm), closing of flow limiters to acceptance limit and injection of target gas
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina18 Will allow for flexible use in two locations Fast ramping (< 30 s) with injection of P y Cryogene free system Snake should be available in 2012 / 2013 ANKE PAX ANKE The Siberian Snake
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina19 Preparations for AD/CERN PAX target section Electron cooler Siberian snake
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina20 Preparations for AD/CERN Atomic Beam Source Six additional quadrupoles Breit-Rabi Polarimeter Target chamber: Detector system + storage cell
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina21 Preparations for AD/CERN PAX low- β section for AD ready for installation
Mitglied der Helmholtz-Gemeinschaft June 26, 2012SPIN Physics Workshop in Gatchina22 Collaboration members in W.Augustyniak r, L. Barion c, S. Barsov d, U. Bechstedt a,b, P. Benati c, S. Bertelli c, V. Carassiti c, D. Chiladze e, G. Ciullo c, M. Contalbrigo c, P.F. Dalpiaz c, S. Dymov g,h, R. Engels a,b, W. Erven i,b, M. Fiorini c, M.Gaisser a,b, R. Gebel a,b, P. Goslawski j, K. Grigoryev d,a,b, G. Guidoboni c, A. Kacharava a,b, A. Khoukaz j, A. Kulikov h, G. Langenberg a,b, A. Lehrach a,b, P. Lenisa c, N. Lomidze e, B. Lorentz a,b, G. Macharashvili h, R. Maier a,b, B. Marianski r, S. Martin a,b, D. Mchedishvili e, S. Merzliakov h,a,b, I.N. Meshkov h, H.O. Meyer k, M. Mielke j, M. Mikirtychiants d,a,b, S. Mikirtychiants d,a,b, A. Nass g,a,b, M. Nekipelov a,b, N.N. Nikolaev a,b,l, M. Nioradze e, D. Oellers a,b,c, M. Papenbrock j, L. Pappalardo c, A. Pesce c, A. Polyanski a,b,f, D. Prasuhn a,b, F. Rathmann a,b, J. Sarkadi a,b, R. Schleichert a,b, A. Smirnov h, H. Seyfarth a,b, V. Shmakova h, M. Statera c, E. Steffens g, H.J. Stein a,b, H. Stockhorst a,b, H. Straatmann m,b, H. Ströher a,b, M. Tabidze e, G. Tagliente n, P. Thorngren Engblom o, S. Trusov p,q, A.Trzcinski r, Y. Valdau a,b,d, A. Vasilyev d, Chr. Weidemann a,b,c, K.M.von Würtemberg o, P. Wüstner i,b, P. Zupranski r a Institut für Kernphysik, Forschungszentrum Jülich GmbH, Jülich, Germany b Jülich Center for Hadron Physics, Jülich, Germany c Università di Ferrara and INFN, Ferrara, Italy d St. Petersburg Nuclear Physics Institute, Gatchina, Russia e High Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia f Institute for theoretical and experimental physics, Moscow, Russia g Physikalisches Institut II, Universität Erlangen-Nürnberg, Erlangen, Germany h Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia i Zentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, Jülich, Germany j Institut für Kernphysik, Universität Münster, Münster, Germany k Physics Department, Indiana University, Bloomington, IN 47405, USA l L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia m Zentralabteilung Technologie, Forschungszentrum Jülich GmbH, Jülich, Germany n INFN, Sezione di Bari, Bari, Italy o Royal Institute of Technology, Physics Department, SE Stockholm, Sweden p Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden, Germany q Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia r National Centre for Nuclear Reserch, Warsaw, Poland