8.1 二元一次方程组. 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取 较好名次,想在全部 22 场比赛中得 40 分,那么这 个队胜负场数应分别是多少 ? 引 言引 言 用学过的一元一次方 程能解决此问题吗? 这可是两个 未知数呀?

Slides:



Advertisements
Similar presentations
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
Advertisements

概率统计( ZYH ) 节目录 2.1 随机变量与分布函数 2.2 离散型随机变量的概率分布 2.3 连续型随机变量的概率分布 第二章 随机变量及其分布.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
基本知识和几何要素的投影 模块一: 字体练习 第一章 制图的基本知识与基本技能 题目提示返回.
Game Theory 窦衍旭. 什么是博弈论 博弈论,经济学中很著名的理论, 就是在 信息不对称的情况下根据对手可能作出的 决策作出决策,通俗地说,如果我这样做, 那么对手会怎样做,而对手基于我的做法 作出决策,我又该怎么做来应对。
绪 论绪 论绪 论绪 论 南京信息工程大学物理实验教学中心 第一次布置的作业 P37/3, 6P37/3, 6 作业做在实验报告册上!!
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
分析化学与无机化学中溶液 pH 值计算的异同比较 谢永生  分析化学是大学化学系的一门基础课,课 时较少,其内容主要是无机物的化学分析。 分析化学是以无机化学作为基础的,我们 都是在已掌握一定的无机化学知识后才学 习分析化学 。所以在分析 化学的学习中会 重复许多无机化学内容,造成学习没有兴.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样 的一种手段。在实际中,数据不可避免的会有误差,插值函 数会将这些误差也包括在内。
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十八讲 ) 离散数学. 例 设 S 是一个非空集合, ρ ( s )是 S 的幂集合。 不难证明 :(ρ(S),∩, ∪,ˉ, ,S) 是一个布尔代数。 其中: A∩B 表示 A , B 的交集; A ∪ B 表示 A ,
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第二十五讲 ) 离散数学. 定理 群定义中的条件 ( 1 )和( 2 )可以减弱如下: ( 1 ) ’ G 中有一个元素左壹适合 1 · a=a; ( 2 ) ’ 对于任意 a ,有一个元素左逆 a -1 适 合 a -1 ·
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第四十五讲 ) 离散数学 模 格 定义 设( L , ≤ ) 是一个格,对任意 a , b , c ∈ L , 如果 a≤b ,都有 a  ( b×c ) = b× ( a  c ) 则称( L , ≤ )为模格。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 4 章 非线性方程求根 非线性科学是当今科学发展的一个重要研究方向,而非线性 方程的求根也成了一个不可缺的内容。但是,非线性方程的求根 非常复杂。
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
主讲教师:陈殿友 总课时: 124 第十一讲 极限的运算法则. 第一章 二、 极限的四则运算法则 三、 复合函数的极限运算法则 一 、无穷小运算法则 机动 目录 上页 下页 返回 结束 §5 极限运算法则.
在发明中学习 线性代数 概念的引入 李尚志 中国科学技术大学. 随风潜入夜 : 知识的引入 之一、线性方程组的解法 加减消去法  方程的线性组合  原方程组的解是新方程的解 是否有 “ 增根 ” ?  互为线性组合 : 等价变形  初等变换  高斯消去法.
9的乘法口诀 1 .把口诀说完全。 二八( ) 四六( ) 五八( ) 六八( ) 三七( ) 三八( ) 六七( ) 五七( ) 五六( ) 十六 四十八 四十二 二十四 二十一 三十五 四十 二十四 三十 2 .口算, 并说出用的是哪句口诀。 8×8= 4×6= 7×5= 6×8= 5×8=
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
第 3 章 控制流分析 内容概述 – 定义一个函数式编程语言,变量可以指称函数 – 以 dynamic dispatch problem 为例(作为参数的 函数被调用时,究竟执行的是哪个函数) – 规范该控制流分析问题,定义什么是可接受的控 制流分析 – 定义可接受分析在语义模型上的可靠性 – 讨论分析算法.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
平行线的平行公理与判定 九年制义务教育七年级几何 制作者:赵宁睿. 平行线的平行公理与判定 要点回顾 课堂练习 例题解析 课业小结 平行公理 平行判定.
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
初中几何第三册 弦切角 授课人: 董清玲. 弦切角 一、引入新课: 什么是圆心角、圆周角、圆周角定理的内容是什么? 顶点在圆心的角叫圆心角。 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 A B′ C B O.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
1.2.4 平面与平面垂直的判定 二面角的有关概念. 问题提出 1. 空间两个平面有平行、相交两 种位置关系,对于两个平面平行, 我们已作了全面的研究,对于两个 平面相交,我们应从理论上有进一 步的认识.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
同学们,这些纸做的彩球漂亮吗? 探究与学习 做彩球除了纸以外, 还需要哪些材料和 工具? 上面几个图中, 用了哪些技法? 用一张或几张彩色纸,经 过折、剪、切、卷、粘等 工序,可以做成各种造型 别致、美观大方的彩球 。
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
本 的 质 基 性 比 上海市傅雷中学 樊丽华 (1). 分数的基本性质 : 分数的分子和分母同时乘以或 除以相同的数( 0 除外), 分数的大小不变. 填空:
1 、如果 x + 5 > 4 ,那么两边都 可得 x >- 1 2 、在- 3y >- 4 的两边都乘以 7 可得 3 、在不等式 — x≤5 的两边都乘以- 1 可得 4 、将- 7x — 6 < 8 移项可得 。 5 、将 5 + a >- 2 a 移项可得 。 6 、将- 8x < 0.
? 小数乘整数 制作人:吴运粮 复习 1.下面乘积得多少? 8 × 3= 8 × 3用加法表示什么意思? 3个8相加 24.
第四 单元: 100 以内数的认识 比较大小 初稿:汤国英 安徽省黄山市黟县碧阳小学 统稿:齐胜利 安徽省黄山市黄山区教研室.
第一节 物质的量. 聚小成大,聚微成宏 想想看: 你如何用托盘天平称出一粒米的质 量(假设每粒大米的质量一样大 )
名探柯南在侦查一个特大盗窃集团过程 中,获得藏有宝物的密码箱,密码究竟 是什么呢?请看信息: ABCDEF( 每个字 母表示一个数字 ) A :是所有自然数的因数 B :既有因数 5 ,又是 5 的倍数 C :既是偶数又是质数 D :既是奇数又是合数 EF :是 2 、 3 、 5 的最小公倍数.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
认识图形(一) 绿色圃中小学教育网 一、依据情境,导入新课 交流:你都收集到哪些物体了,跟小伙伴说一说。 这些都是我收集的! 快说说它们都是什么 形状的物体 !
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
第四章 不定积分. 二、 第二类换元积分法 一、 第一类换元积分法 4.2 换元积分法 第二类换元法 第一类换元法 基本思路 设 可导, 则有.
数学广角——优化 沏茶问题.
个体 精子 卵细胞 父亲 受精卵 母亲 人类生活史 问题:人类产生配子(精、卵 细胞)是不是有丝分裂?
用一些不重叠摆放的多边形把平面 的一部分完全覆盖叫平面镶嵌(多 边形覆盖平面)。 仅用一种正多边形镶嵌,哪几种正 多边形能镶嵌成一个平面? 探究问题(一)
算得清写的准 —— 物业费公示报告的编写 讲师:朱芸 物业费的 构成? 哪些是管 理人员工 资呢? 哪些算工程费 用? 怎样才能核 算的清楚呢?
◆ ▲ ★ ★ ▲ ◆ ●★ ▲ ◆ ●★ ▲ ◆ ●★ ▲ ◆ ● ▲ ◆▲ ◆▲ ◆▲ ◆▲ ◆▲ ◆ ▲ ● ◆ ★ ★ ▲ ◆ ★● ◆ ★ ★ ▲ ◆ ★ 猜一猜下一个图形是什么.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
同分母分数加、减法 分数的初步认识 绿色圃中小学教育网
用 9 加几解决问题 北京小学 石 颖 第八单元 20 以内的进位加法. 一、口算练习,复习旧知 9+5 = 9+7 = 109 快来算一算! 我们一起看算式,抢答结果,看谁算得又对又快! 说一说你是怎么计算 9+5 这道题的。 2+9 = 5+9 =
你们知道画面画的是谁 ? 是谁画的 ? 画家徐悲鸿 自画像 对比徐悲鸿的照片和画家自画像, 说说画家抓住了自己外貌的什么特点 ? 发 型发 型五 官五 官脸 型脸 型.
第一节 生活中的立体图形 新郑市辛店镇第二初级中学 张艳红. 北京天安门 北京天坛 埃及金字塔.
表内除法(一) 用 2 ~ 6 的乘法口诀 求商( 2 ). 填一填,并说出用哪句乘法口诀。 12÷6 = 6÷2 = 12÷4 = 8÷4 = 9÷3 = 10÷2 = ×7 = 6×6 = 7×2 = 4×8 = 5×6 = 7×4 =
人 有 悲 欢 离 合, 月有阴晴圆缺。月有阴晴圆缺。 华师大版七年级数学第二册 海口市第十中学 数学组 吴锐.
§5.6 利用希尔伯特 (Hilbert) 变换 研究系统的约束特性 希尔伯特变换的引入 可实现系统的网络函数与希尔伯特变换.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
SCI 数据库检索练习参考 本练习完全依照 SCI 数据库实际检索过程而 实现。 本练习完全依照 SCI 数据库实际检索过程而 实现。 练习中,选择了可以举一反三的题目,读 者可以根据题目进行另外的检索练习,如: 可将 “ 与 ” 运算检索改为 “ 或 ” 、 “ 非 ” 运算检索 等等。 练习中,选择了可以举一反三的题目,读.
寿县一中 常清 简单几何体 鸟巢.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
思考:物质由哪些微粒构成? 思考:物质由哪些微粒构成? 仅仅是只由分子原子构成的吗?有没有其它的 微粒? 仅仅是只由分子原子构成的吗?有没有其它的 微粒? 原子 原子核 ( + ) ( + ) 质子( + ) 中子 核外电子( – ) H 、 C 、 O 、 Na 、 S 这五种元素的原子核外各有.
1 ~ 5 的认识和加减法 比多少 第一 PPT 模板网 - PPT 模板下载: 行业 PPT 模板: 节日 PPT 模板: PPT 素材下载:
Presentation transcript:

8.1 二元一次方程组

篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取 较好名次,想在全部 22 场比赛中得 40 分,那么这 个队胜负场数应分别是多少 ? 引 言引 言 用学过的一元一次方 程能解决此问题吗? 这可是两个 未知数呀?

篮球联赛中,每场比赛都要分出胜负,每队 胜一场得 2 分,负一场得 1 分. 如果某队为了争取较 好名次,想在全部 22 场比赛中得 40 分,那么这个 队胜负场数应分别是多少 ? 那么,能设两个未知数吗?比如设胜 x 场, 负 y 场;你能根据题意列出方程吗? 胜负合计 场数 xy22 积分 2x2xy40 用方程表示为: 依题意有: 两个耶! 议一议

> 是我国古代较为普及的算 书, 许多问题浅显有趣. 其中下卷第 31 题 “ 鸡兔 同笼 ” 问题流传尤为广泛, 飘洋过海传到了日 本等国. > 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?

鸡兔同笼 设鸡有 x 只,兔 y 只,根据题意,得 著名的 “ 鸡兔同笼 ” 问题: “ 今有鸡兔同笼, 上有三十五头,下有九十四足,问鸡兔各几 何? ” 鸡兔合计 头 xy35 足 2x2x4y4y94 则有: 两个方程!

( 1 ) 2 个未知数 ( 2 )未知数的项的次数是 1 含有两个未知数, 并且所含未知数的项的 次数都是 1 次的方程叫做二元一次方程. 两个 1次1次 观察上面四个方程,有何共同特征? 二元一次方程 9442  yx35  yx 像这样把两个二元一次方程合在一起, 就组成了一个二元一次方程组 把两个方程 写在一起:

( 1 ) 2 个未知数 ( 2 )未知数的项的次数是 1 含有两个未知数, 并且所含未知数的项的 次数都是 1 次的方程叫做二元一次方程. 两个 1次1次 观察上面四个方程,有何共同特征? 二元一次方程 9442  yx35  yx ( 1 ) “ 一次 ” 是指含未知数的项的次数 是 1 ,而不是未知数的次数 ( 2 )方程的左右两边都是整式

哪些是二元一次方程(组)?为什么? 你猜( 5 )我们该称什么? 三元一次方程

x y … 18 … … 4 … 0 我们再来看引言中的方程 , 符合问题的实际意义的 x 、 y 的值有哪些? 若不考虑实际意义你还能再找出几个方程的解吗? 一般地,一个二元一次方程有无数个解。 如果对未知数的取值附加某些限制条件,则 可能有有限个解 使二元一次方程左右两边相等的一组未知数的值, 叫做这个二元一次方程的一个解 通常记作: ······

1 、下面 4 组数值中,哪些是二元一次方程 2x+y=10 的解? x = -2 y = 6 (1) x = 3 y = 4 (2) x = 4 y = 3 (3) x = 6 y = -2 (4) 2 、找出上述方程的所有正整数解 x=2 y=3 3 、请写出一个以 为一组解的二元一次 方程

鸡兔同笼 解:设鸡有 x 只,兔 y 只,根据题意, 得: 著名的 “ 鸡兔同笼 ” 问题: “ 今有鸡兔同笼, 上有三十五头,下有九十四足,问鸡兔各几 何? ” 两个方程! 两个二元一次方程所组成的一组 方程叫做二元一次方程组

哪些是二元一次方程组?为什么? 其中( 3 )也是二元一次方程组 —— 只要两个 一次方程合起来共有两个未知数,那么他们就组 成一个二元一次方程组。 你猜( 2 )我们该称什么? 三元一次方程组

x y … 18 … … 4 … 0 1 、满足方程 且符合问题的实际意 义的 x 、 y 的值有哪些?把它们填入下表中 x y … 18 … … 4 … -4 2 、满足方程 且符合问题的实际意 义的 x 、 y 的值有哪些?把它们填入下表中 不难发现 x=18,y=4 既是 x+y=22 的解,也是 2x+y=40 的解,也就是说是这两个方程的公共解,我们把它们叫 做方程组 的 解 。 记作:

使二元一次方程两边的值相等的两个未知 数的值,叫做二元一次方程的解. 它的解有 无数个。 二元一次方程组的两个方程的公共解,叫 做二元一次方程组的解。显然二元一次方 程组只有一对解,记作 X= Y= 二元一次方程(组)的解 综上所述:

1 、方程 2x+3y=8 的解 ( ) A 、只有一个 B 、只有两个 C 、只有三个 D 、有无数个 练一练 2 、下列 4 组数值中, 哪些是二元一次方程 的解 ? ( )

4 、方程组 的解是( ) 3 、下列属于二元一次方程组的是 ( ) 练一练

学习了本节课你有 哪些 收获?

1. P102 练 习, 2. P , 1--5