Markus Büscher, HYP Strangeness COSY Proton Induced Strangeness Production on Protons and Nuclei Near Threshold Markus Büscher Forschungszentrum Jülich Germany ANKE COSY-11 COSY-TOF
Markus Büscher, HYP The Accelerator: COSY-Jülich COSY (Cooler Synchroton) at FZ-Jülich (Germany): (polarized) p & d beams phase-space cooling –electron & stochasting cooling p = 0.30 – 3.65 GeV/c –pp pp X (m X 1.1 GeV/c 2 ) –dd X (m X 1.0 GeV/c 2 ) –pp pK + Y* (m Y* 1.5 GeV/c 2 ) internal & external beams
Markus Büscher, HYP COSY vs. Other Accelerators Production Thresholds: p p p K + T p = 1.58 GeV p p p K + 0 T p = 1.79 GeV p p p K 0 + T p = 1.80 GeV p p p p K + K - T p = 2.50 GeV Some interesting reactions: –pp pK + Y (m Y 1.5 GeV/c 2 ) –pp pp a 0 /f 0 (980) –pA pK + X (T p = GeV) Several dedicated detection systems... Hadron accelerators Electron accelerators
Markus Büscher, HYP COSY Detectors at COSY Cluster target drift chambers scintillator ANKE, COSY-11: –circulating beam –thin internal targets –forward spectrometer (small acceptance) -magnetic spectrometer COSY-TOF: –extracted beam –small target (vertex) –nearly 4 coverage (no charge id) -non-magnetic MOMO (at BIG KARL)
Markus Büscher, HYP COSY-TOF: Detection Principle No magnetic field Detection of charged ejectiles Complete geometrical reconstruction of each event kinematical variables Start detector optimized for track/vertex reconstruction Additionally: TOF & E Trigger: charge 2 4 double-sided ring -strip Start scintillator Fiber hodoscope intermediate fiber hodoscope Flight path for TOF measurement “Quirl“
Markus Büscher, HYP Strangeness Production … Initial- (ISI) and Final State Interactions (FSI): If (p,Y), (p,K), or (K,Y) travel along with each other, they interact and „distort“ spectra (observables): exploit this to study such interactions !! reactions close to threshold Example: (p )-FSI (p ) scattering length FSI ISIProduction NN NN X NYK
Markus Büscher, HYP Exp. N* & FSI p- FSI N*(1650) -Hyperon Production Dalitz-plots: (analysis w/ theoretical model of A. Sibirtsev) at 2.85 GeV/c (see Fig.) in addition to p- FSI, a strong contribution of the N*(1650) nucleon resonance is needed At higher energies, also the N*(1710) has to be included [FSI+N*(1650)] : N*(1710) ~ 1 p p p K + (COSY-TOF) W. Schröder, Ph.D. thesis Uni Erlangen, to be published p p p K+K+ N*
Markus Büscher, HYP p Interaction Total cross section for pp p K + a) phase space b) ____ p-K + Coulomb repulsion and p- strong FSI Dalitz-pot analysis: spin-averaged p-scattering length: a = - (2.0 ± 0.2) fm But: a and r are correlated Watson formula applicable? Spin dependence (a s /a t )? J.T. Balewski et al., EPJ A 2, 99 (1998) p p p K + (COSY-11) Theory can help... !
Markus Büscher, HYP p Scattering Length Polarisation measurements (COSY) a s, a t Formula also applicable for d K N A. Gasparian et al., subm. to PRC p pp p pp K + p SATURNE ( m=2 MeV) a = (–1.5 ± 0.15 exp ± 0.3 th ) fm Data: - p elastic scattering ( el = ¼ s + ¾ t ) - Bubble chamber Fit: - Effective-range expansion G. Alexander et al., PR 173, 1452 (1968) observable S = s or t
Markus Büscher, HYP -Hyperon Production Dalitz-plots: at 3.20 GeV/c (see Fig.) rather smooth distribution p p p K 0 (COSY-TOF) ++ “pentaquark“ states ( + )??? observed in (nK + ) in photo- nuclear reactions here: pp + + K 0 p “... we are optimistic to significantly contribute to the topic...“ pp pK 0 +, 3.30 GeV/c preliminary! nothing seen in pp K + p) !!
Markus Büscher, HYP The Light Scalar Resonances COSY S I K * (?) a 0 - (?)a 0 0 (?)f 0 (?)a 0 + (?) f 0 (?) Nonet of light scalar mesons J P =0 + f 0 (500) (“ “) f 0 (980) a 0 (980) f 0 (1370) K 0 *(1430) a 0 (1450) f 0 (1500) Possible candidates 9 states } }
Markus Büscher, HYP The a 0 /f 0 (980) at ANKE/COSY pp d ++ _ K+K0 K+K0 pp pp K + K - COSY-11 dd 4 He 0 pN d ()() +/0 0 Summer 2003 pn d K+K-K+K- MOMO pd 3 He K + K - Defined FS isospin Angular symmetries a 0 -f 0 mixing Charge-symmetry breaking a 0 -f 0 mixing (pn d a 0 0 /f 0 ) vs. (pp d a 0 + ) (pd 3 He a 0 0 /f 0 ) vs. (pd 3 H a 0 + ) Angular asymmetries ANKE Photon detector (WASA) dd 4 He K + K - (pp da 0 + dK + K 0 ) = 83% · 38 nb Photon detector for identification needed M. Büscher et al., hep-ph/
Markus Büscher, HYP K + Production from pA Reactions Inclusive cross sections for –D, C, Cu, Ag, Au Targets –T = GeV (T NN = 1.58 GeV) Reaction mechanisms –Strong collectivity below threshold –Model calculations (CBUU transport, folding model...) –Correlation measurements pD data: – (pn K + X) 4· (pp K + X) taken from: K.Tsushima et al., PRC 59, 369 (1999) pD K + X T p = 2.0 GeV p A K X (ANKE) pC K + X preliminary Publication in preparation
Markus Büscher, HYP Nuclear Medium Effects M.Nekipelov et al., PLB 540, 207 (2002) pA K + X (ANKE) V K = +20 MeV R(Au/C) T=2.3 GeV Transport model: Z.Rudy et al., EPJ A 15, 303 (2002) K + rescattering, Coulomb repulsion Nuclear potential cross section ratio (Au/C) w/o potentials MeV Cross-section ratios R(A/C) have very small systematic uncertainties V K + is sensitive to peak position in R(A/C) pA reactions probe nuclear medium at 0 Best agreement with calculations for V K + ( 0 ) = +20 MeV Expected accuracy <3 MeV p A K X (ANKE)
Markus Büscher, HYP Strangeness Production … “Exotic“ states - + in pp pK 0 + ??? Charge-symmetry breaking -dd ( 0 ) and a 0 -f 0 mixing SU(3) flavor symmetry breaking -NY interaction at low relative energies (compare with NN) In-medium masses... fundamental issues can be addressed needs to (and will) be vigorously investigated (at COSY)! pp pK 0 +, 3.30 GeV/c preliminary! R(Au/C) V K = +20 MeV pA K + X
Markus Büscher, HYP I.d. of pp dK + K 0 ANKE K+K+ d T = 2.65 GeV tt p K + -d coincidence measurement Identification of pp dK + X events via TOF, E and particle momenta Identification of pp dK + K 0 events via dK + missing mass Background < 10% COSY beam Spectrometer dipole
Markus Büscher, HYP First Results on the a 0 + V.Kleber et al., PRL in print; nucl-ex/ Q = 46 MeVFit: [(K K ) P d] S + [(K K ) S d] P tot (pp dK + K 0 ) = (38 ± 2 stat ± 14 sys ) nb (pp da 0 + dK + K 0 ) = 83% · tot p p d K + K 0 (ANKE)
Markus Büscher, HYP vs. 0 Production … 0 ratio (same excess energy above threshold): R ~ 25 at threshold, R(E) 3 Difference between and ? | > = |(ud)[I=0, 1 S 0 ], s> I=0, ½ + = |(ud)[I= 1, 3 S 1 ], s> I=1, ½ + R ~ 3 coupling: g N K, g N K R ~ 27 N p transition destructive π /K interference NPA 684 (2001) 397 effective Lagrangian / N* PRC 63 (2001) incoh. π /K nucl-th/ resonance + π/ρ/η nucl-th/ S. Sewerin et al., PRL 83, 682 (1999) pp pK + / (COSY-11)
Markus Büscher, HYP Experimental challenges... NN Partial Cross Sections: p p N Y K (mostly COSY data) more specifically: p p p K + p p p K + p p p K 0 p p n K + (p p pp K + K - )