Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property.

Slides:



Advertisements
Similar presentations
Beyond Chlorophyll: Ocean color ESDRs and new products S. Maritorena, D. A. Siegel and T. Kostadinov Institute for Computational Earth System Science University.
Advertisements

Copyright © 2014 by Curtis D. Mobley Curtis Mobley Vice President for Science and Senior Scientist Sequoia Scientific, Inc. Belleue, WA 98005
Atmospheric correction using the ultraviolet wavelength for highly turbid waters State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute.
GlobColour CDR Meeting ESRIN July 2006 Merging Algorithm Sensitivity Analysis ACRI-ST/UoP.
CORAL REEF MAPPING IN THE RED SEA (HURGHADA, EGYPT) BASED ON REMOTE SENSING Presented by: Justin Prosper s
A novel concept for measuring seawater inherent optical properties in and out of the water Alina Gainusa Bogdan and Emmanuel Boss School of Marine Sciences,
2 Remote sensing applications in Oceanography: How much we can see using ocean color? Adapted from lectures by: Martin A Montes Rutgers University Institute.
1 Remote sensing applications in Oceanography: How much we can see using ocean color? Martin A Montes Ph.D Rutgers University Institute of Marine and Coastal.
R I T Rochester Institute of Technology HYCODE Meeting MURI Overview January 16, 2003 Rochester Institute of Technology Cornell University University of.
Effects of Fluorescence Self Absorption of Algae in Sea Water Candy Barbaran Annie Becerra Mentors: Prof. Fred Moshary Dr. Alex Gilerson NYCRI C N p.
UNH Coastal Observing Center NASA GEO-CAPE workshop August 19, 2008 Ocean Biological Properties Ru Morrison.
Digital Imaging and Remote Sensing Laboratory Hyperspectral Water Quality 1 EOCAP-HSI FINAL Briefing RIT Technical Activities John Schott, RIT PI
Ocean Color Observations and Their Applications to Climate Studies Alex Gilerson, Soe Hlaing, Ioannis Ioannou, Sam Ahmed Optical Remote Sensing Laboratory,
The IOCCG Atmospheric Correction Working Group Status Report The Eighth IOCCG Committee Meeting Department of Animal Biology and Genetics University.
Atmospheric Correction Algorithms for Remote Sensing of Open and Coastal Waters Zia Ahmad Ocean Biology Processing Group (OBPG) NASA- Goddard Space Flight.
The use of MOD09 product and in situ data in a reservoir Valério, A.M.; Kampel, M.; Stech, J.L. alineval, milton, stech COSPAR Training.
Inverting In-Water Reflectance Eric Rehm Darling Marine Center, Maine 30 July 2004.
Chapter 7 Atmospheric correction and ocean color algorithm Remote Sensing of Ocean Color Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth.
The problem of reliable detection of coccolitophore blooms in the Black Sea from satellite ocean color data O. Kopelevich. Shirshov Institute of Oceanology.
Spectral Requirements for Resolving Shallow Water Information Products W. Paul Bissett and David D. R. Kohler.
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Modeling Suspended Solids Jason Hamel November 11, 2004.
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Model-Predicted Suspended Sediment Inherent.
FIGURE 3.1 Values of density  t (curved lines) and the loci of maximum density and freezing point (at atmospheric pressure) for seawater as functions.
Towards community-based approaches to estimating NPP & NCP from remotely-sensed optical properties Rick A. Reynolds Scripps Institution of Oceanography.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
Lab 9 Hydrolight and Ecolight. Ex. 1: Inputing measured Chl(z) data.
Estimating Water Optical Properties, Water Depth and Bottom Albedo Using High Resolution Satellite Imagery for Coastal Habitat Mapping S. C. Liew #, P.
Detecting and Monitoring Harmful Algal Blooms on Florida Coast Joseph Tuzzino, Brooklyn Technical High School Jonathan Tien, St. Francis Preparatory Dr.
Using in-situ measurements of inherent optical properties to study biogeochemical processes in aquatic systems. Emmanuel Boss Funded by:
R I T Rochester Institute of Technology Photon Mapping Development LEO-15 DATA SETS (AVIRIS, IOPs) Atmospheric Compensation HYDROLIGHT Simulations (LUT)
Towards a Hydrodynamic and Optical Modeling System with Remote Sensing Feedback Yan Li Dr. Anthony Vodacek Digital Imaging and Remote Sensing Laboratory.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
Ocean Color Remote Sensing Pete Strutton, COAS/OSU.
Models for Scattering Curtis Mobley Copyright © 2011 by Curtis D. Mobley Ocean Optics Summer Class Calibration and Validation for Ocean Color Remote Sensing.
Inverting In-Water Reflectance Eric Rehm Darling Marine Center, Maine 30 July 2004.
R I T Rochester Institute of Technology Simultaneous Retrieval of Atmospheric Parameters and Water Constituent Concentrations.
Digital Imaging and Remote Sensing Laboratory Spectral Signatures.
What is the key science driver for using Ocean Colour Radiometry (OCR) for research and applications? What is OCR, and what does it provide? Examples of.
Optical Water Mass Classification for Interpretation of Coastal Carbon Flux Processes R.W. Gould, Jr. & R.A. Arnone Naval Research Laboratory, Code 7333,
Definition and assessment of a regional Mediterranean Sea ocean colour algorithm for surface chlorophyll Gianluca Volpe National Oceanography Centre, Southampton.
Rick Reynolds and Dariusz Stramski Measurements of IOPs and Characterization of Particle Assemblages for Monterey Bay Experiment Marine Physical Laboratory.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Modeling Suspended Solids Jason Hamel October 8, 2004.
Physics-Based Modeling of Coastal Waters Donald Z. Taylor RIT College of Imaging Science.
Impact of Watershed Characteristics on Surface Water Transport of Terrestrial Matter into Coastal Waters and the Resulting Optical Variability:An example.
The effect of wind on the estimated plume extension of the La Plata River Erica Darken Summer 2004.
A processing package for atmospheric correction of compact airborne spectrographic imager (casi) imagery over water including a novel sunglint correction.
Hyperspectral remote sensing
NASA’s Coastal and Ocean Airborne Science Testbed (COAST) L. Guild 1 *, J. Dungan 1, M. Edwards 1, P. Russell 1, S. Hooker 2, J. Myers 3, J. Morrow 4,
Remote sensing of coastal habitats: Challenges: Adjacency effects Atmospheric correction (no null NIR band) Currently addressed by Europeans (e.g. Belcolour)
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
SIO 210: Light and Optics Oct. 12, 2009 Uwe Send Reading: DPO chapter 3 J.R. Apel, Principles of Ocean Physics,
NRL 7333 Rb = 1-  1+  1+  2 Non- Linear b1- b2q3 influences We developed improved SeaWIFS coastal ocean color algorithms to derived inherent optical.
1 Retrieval of ocean properties using multispectral methods S. Ahmed, A. Gilerson, B. Gross, F. Moshary Students: J. Zhou, M. Vargas, A. Gill, B. Elmaanaoui,
Lecture 12: Models of IOPs and AOPs Collin Roesler 11 July 2007.
CHLTSSCDO M Suspended Sediment Only Lake Ontario Long Pond Lake Conesus Genesee River Plume APPROACH.
The Dirty Truth of Coastal Ocean Color Remote Sensing Dave Siegel & St é phane Maritorena Institute for Computational Earth System Science University of.
Feng Peng and Steven Effler
Coastal Water Algorithms
Hyperspectral Sensing – Imaging Spectroscopy
Study area & research’s purposes
Monitoring Water Chlorophyll-a Concentration (Chl-a) in Lake Dianchi,China from 2003 ~ 2009 by MERIS Data.
Optical Oceanography and Ocean Color Remote Sensing
Hydrolight and Ecolight
Jian Wang, Ph.D IMCS Rutgers University
Simulation for Case 1 Water
Wei Yang Center for Environmental Remote Sensing
Jason Hamel Dr. Rolando Raqueño Dr. John Schott Dr. Minsu Kim
Jason Hamel Dr. Rolando Raqueño Dr. John Schott Dr. Minsu Kim
Presentation transcript:

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property Effects on Modeled Water Leaving Radiance Jason Hamel Dr. Rolando Raqueño Dr. John Schott Dr. Minsu Kim

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Objective Examine the effect of suspended solids on water leaving radianceExamine the effect of suspended solids on water leaving radiance –Perform a sensitivity study using a model to determine effect of: »Composition »Particle size »Concentration –Analyze the NIR region to determine cases where normal atmospheric correction methods over water will fail Tools:Tools: –OOPS –Hydrolight

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Signal Sources Air/Water Transition Water/Air Transition In Water Atmosphere to Sensor 10% 80% 10%

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Characteristics of Spectral data Irondequoit Bay Lake Ontario Genesee River

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Hydrolight is our current water modeling toolHydrolight is our current water modeling tool To model the radiance leaving the water surface Hydrolight needs defined:To model the radiance leaving the water surface Hydrolight needs defined: –Illumination –Surface wind speed –Water quality parameters –Bottom conditions

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Water quality parametersWater quality parameters –Material components in the water column (typically included is pure water, chlorophyll, suspended solids, and color dissolved organic matter) »Concentration »Absorption coefficient »Scattering coefficient »Scattering phase function –All variables can be defined for wavelength and depth

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Ocean Optical Plankton Simulator (OOPS) developed at CornellOcean Optical Plankton Simulator (OOPS) developed at Cornell Models absorption and scattering coefficients and the scattering phase functionModels absorption and scattering coefficients and the scattering phase function Generate IOP’s of in-water constituents if basic properties of the materials are knownGenerate IOP’s of in-water constituents if basic properties of the materials are known Can generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radianceCan generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radiance

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids in OOPS Basic physical and optical properties needed by OOPS to model IOP’s:Basic physical and optical properties needed by OOPS to model IOP’s: –Suspended solids composition –Refractive index –Particle size distribution –Density

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids Composition QuartzSiO 2QuartzSiO 2 FeldsparsFeldspars –OrthoclaseKAlSi 3 O 8 –AlbiteNaAlSi 3 O 8 –AnorthiteCaAl 2 Si 2 O 8 Clay mineralsClay minerals –KaoliniteAl 4 (OH) 8 [Si 4 O 10 ] –Chlorite(Al, Mg, Fe) 3 (OH) 2 [(Al,Si} 4 O 10 ] Mg 3 (OH) –Illite(K, H 2 O) Al 2 (H 2 O, OH) 2 [AlSi 3 O 10 ] –Montmorillonite{(AL 2-x Mg x ) (OH) 2 [Si 4 O 10 ]} -x Na x. n H 1 O Calcite/aragoniteCaCO 3Calcite/aragoniteCaCO 3 OpalSiO 2 (amorphous)OpalSiO 2 (amorphous)

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices Ordinary RayExtraordinary RayTertiary Ray Quartz Quartz FeldsparsFeldspars –Orthoclase –Albite –Anorthite ClaysClays –Kaolinite –Chlorite –Illite –Montmorillonite Calcium CarbonateCalcium Carbonate –Calcite –Aragonite Opal1.44Opal1.44 From Lide, D. R. (2003). CRC Handbook of Chemistry and Physics CRC Press, 84th edition.

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices From Gifford, J. W. (1902). The refractive indices of fluorite, quartz, and calcite. Proceedings of the Royal Society of London, 70:

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Particle Size Distributions Will test 3 particle size distributions (PSD):Will test 3 particle size distributions (PSD): –Junge –Gaussian –Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Typical Ocean PSD’s From Simpson, W. R. (1982). Particulate matter in the oceans-sampling methods, concentration, size distribution, and particle dynamics. Oceanography and Marine Biology, 20:

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Junge PSD’s

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T In Situ PSD’s Measurements made using a Benthos plankton cameraMeasurements made using a Benthos plankton camera Found 80% of particulate matter in suspension as flocs larger than 100  m in sizeFound 80% of particulate matter in suspension as flocs larger than 100  m in size From Eisma, D., et al. (1991). Suspended-matter particle size in some West-European estuaries; Part I: Particle-size distribution. Netherlands Journal of Sea Research, 28(3):

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Gaussian PSD’s

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Log-Normal PSD’s

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Hydrolight Analysis Now that some variations of suspended solids are known, Oops can generate various suspend solid IOP’sNow that some variations of suspended solids are known, Oops can generate various suspend solid IOP’s These IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radianceThese IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radiance Since the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runsSince the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runs

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral 1.44

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal /1.658/Spectral Junge2 Gaussian7 Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Original Hydrolight IOP

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Effect of Composition and PSD

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Lake Ontario Cases

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Genesee River Plume Cases

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conesus Lake Cases

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Long Pond Cases

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Minerals, Same PSD and Concentration

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different PSD’s, Same Mineral and Concentration

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Concentrations, Same Mineral and PSD

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T NIR Region 170 observations of a Junge 105 observations of a Log-Normal

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom JungesLog-Normals UFI measured Albite Calcite Calcite Calcite spec Kaolinite Opal Quartz

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite Calcite Calcite spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite Calcite Calcite spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite Calcite Calcite spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite Calcite Calcite spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Classification MaxD 20 band classmap K-means max 20 bands classmap 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI JL-NUFI

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Concentration Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Some PSD and Mineral Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conclusions OOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituentsOOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituents A database of reflectance curves representative of some case 2 water bodies has been generatedA database of reflectance curves representative of some case 2 water bodies has been generated Initial results are following expectationsInitial results are following expectations –Mineral composition, PSD, and concentration all have an effect on the water surface reflectance –Situations exist for Log-Normal PSD’s between nm where there is 1-2% surface reflectance that will interfere with normal atmospheric correction attempts