Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
European Space Astronomy Centre (ESAC) May 23, 2013.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Are Stellar Eruptions a Common Trait of SNe IIn? Baltimore, MD 06/29/11 Ori Fox NPP Fellow NASA Goddard Based on arXiv:
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
Core-collapse supernovae as dust producers: what Spitzer is telling us
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa (Hokkaido University), N. Tominaga (NAOJ), K. Maeda (IPMU), H. Umeda (UT), K. Nomoto (IPMU/UT)

Contents 1. Introduction 2. Formation of dust in Type IIb SN 3. Evolution of dust in Cas A SNR 4. Formation of dust in Type Ia SN

1. Introduction

1-1. Introduction Supernovae are the important sources of dust? ・ theoretical studies of dust formation - mass of dust formed in the ejecta of SNe II ➔ M form = M sun (Todini & Ferrara 2001; Nozawa et al. 2003) grain size : > 0.01 μm (Nozawa et al. 2003) - mass of dust surviving the reverse shock ➔ M sur = M sun for n H,0 = cm -3 (Nozawa et al. 2007; see also Bianchi & Schneider 2007) ・ a large amount of dust ( M sun ) for QSOs at z > 5 (Bertoldi et al. 2003; Priddy et al. 2003; Robson et al. 2004) ➔ M sun of dust per SN II are required to form to explain dust budget in high-z QSO systems (Morgan & Edmunds 2003; Dwek et al. 2007)

1-2. Introduction ○ IR observaitons of dust-forming SNe (~10 SNe) M dust = M sun SN 1987A ➔ M sun (Elcolano et al. 2007) SN 2003gd ➔ 0.02 M sun (Sugerman et al. 2006) ➔ 4x10 -5 M sun (Miekle et al. 2007) SN 2006jc ➔ ~7x10 -5 M sun (Sakon et al. 2008) ➔ 6x10 -6 M sun (Smith et al. 2008), 3x10 -4 M sun (Mattila et al 2008) ○ IR observaitons of nearby young SNRs M dust = M sun (e.g., Hines et al. 2004, Temim et al. 2006; Morton et al. 2007) Theoretical predictions overestimate dust mass? Observations are seeing only hot dust ( > 100K)? Thermal emission from dust is optically thin?

1-3. Aim of our study ・ Cas A SNR (SN type : IIb) - dust formation in the ejecta of a SN - dust evolution in the shocked gas within SNRs How much and what kind of dust are supplied by SNe? ・ Dust-forming SNe ・ Type IIp (SN1999em, SN 2003gd) ➔ days ・ Type IIn (SN1998S) ➔ ~230 days ・ Type Ib (SN1990I, SN 2006jc) ➔ ~230 days ・ Type Ic ➔ not observed ・ Type Ia ➔ not observed Formation process of dust in the ejecta depends on the type of SNe?

1-4. Cassiopeia A SNR ○ Cas A SNR (SN 1671) age: 337yr (Thorstensen et al. 2001) distance: d=3.4 kpc (Reed et al. 1995) radius: ~150” (~2.5 pc) SN type : Type IIb (M MS =15-25 M sun ) Krause et al. (2008)

1-5. Latest estimate of dust mass in Cas A (Rho et al. 2008) ➔ M dust = M sun onion-like elemental composition remains

2. Formation of dust in Type IIb SN

2-1. Dust formation calculation ○ Type IIb SN model - M MS = 18 M sun M ej = 2.94 M sun M H-env = 0.08 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun ○ Dust formation theory - non-steady nucleation and grain growth theory (Nozawa et al. 2003) - onion-like composition - sticking probability; α s = 1

2-2. Mass and average radius of dust formed average radius Mass of dust formed Low gas density in SN IIb prevents dust grains from growing up to large-sized (> 0.01μm) grain Total mass of dust formed in SN IIb is consistent with that in SN IIp

2-3. Cumulative size spectrum of dust in mass SN IIp (M MS =20 M sun ) SN IIb (M MS =18 M sun ) Grain radius ➔ > 0.01 μm for SN IIp ➔ < 0.01 μm for SN IIb Dust grains formed in H-deficient SNe can be small

3. Evolution of dust in Cas A SNR

3-1. Calculation of dust evolution in SNRs ○ Model of calculations (Nozawa et al. 2006, 2007) ・ ejecta model - hydrodynamic model for dust formation calculation ・ ISM - homogeneous, T gas =10 4 K - n H = 1.0 and 10.0 cm -3 - solar composition of gas ・ treating dust as a test particle - erosion by sputtering - deceleration by gas drag - collsiional heating

3-2. Evolution of dust in Cas A SNR n=1.0 /cc n=10.0 /cc

n=1.0 /ccn=10.0 /cc 3-3. Time evolution of dust mass M dust ~ M sun at 10 5 yr M dust = 0 M sun at 10 5 yr Core-collapse SNe with thin H-envelope cannot be the main sources of dust The radius of dust formed in the peculiar Type Ib SN 2006jc (M MS =40 M sun, E 51 =10) is small (< 0.01 μm) (Nozawa et al. 2008)

・ thermal radiation from dust ← temperature of dust ・ equilibrium temperature of dust in SNR is determined by collisional heating with gas and radiative cooling H (a, n, T g )= Λ(a, Q abs, T d ) ➔ thermal emission ・ small-sized dust grains ( < 0.01 μm) ➔ stochastic heating 3-4. Thermal emission from dust in the SNR

3-5. Comparison with Cas A observation (1) Data: Hines et al. (2004) red: with SH green: without SH

3-6. Comparison with Cas A observation (2) Data: Hines et al. (2004) red: with SH green: without SH Dust mass of 0.04 M sun is consistent with mass of dust (~ M sun ) in Cas A derived by Rho et al. (2008)

4. Formation of dust in Type Ia SN

4-1. Dust formation calculation for SN Ia ○ Type Ia SN model W7 model (C-deflagration) (Thielemann et al. 1986) - M pr = 1.38 M sun - E 51 = 1 - M( 56 Ni) = 0.6 M sun ○ Dust formation theory - non-steady nucleation and grain growth theory (Nozawa et al. 2003) - onion-like composition - sticking probability; α s = 1

Condensation time Average radius of grain Condensation time of dust : days Average radius of dust : < 0.01 μm 4-2. Results of dust formation calculation

Mass of dust formed Total mass of dust M dust =0.047 M sun 4-3. Mass of dust formed in SN Ia Optical depth at 300 days τ(0.55) ~ 100 τ(0.55) ~ 60 by C grains τ(0.55) ~ 35 by Si and FeS grains ➔ too high

Early formation of dust ➔ days Large M(56Ni) ➔ 0.6 M sun 4-4. NLTE dust formation lnS’ (Tv) = lnS(T) +0.5 ln(T/Tv)

4-5. Dust temperature F(r)= L / 4 π r^2

There is no evidence that C has been detected in SN Ia If we ignore C grains in SN Ia M dust = 5x10^-3 τ(0.55) ~ 0.8 at 300 day 4-6. mass of dust formed Mass of dust formed

1) The size of dust formed in the ejecta of Type IIb SN is relatively small because of low gas density of the ejecta 2) Newly formed dust grains in Type IIb SN cannot survive the reverse shock since their radii are small ( < 0.01 μm) 3) Model of dust destruction and heating in Type IIb SNR for n H =10.0 cm -3 reproduces the observed SED of Cas A ➔ circumstellar / interstellar dust ➔ density structure of circumstellar medium ➔ thermal emission from dust at various positions 4) For Type Ia SN, the effect of radiation on dust formation can be important Summary