Radio Emission in Galaxies Jim Condon NRAO, Charlottesville.

Slides:



Advertisements
Similar presentations
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
Advertisements

Joint Infrared & X-ray Investigation of LINER Galaxies Rachel Dudik, John McNulty & Mona Sanei.
In the search for CO emission in young, low- metallicity spiral disks and dwarf galaxies: Prospects for ALMA Armando Gil de Paz (UCM), Kartik Sheth (Caltech/SSC),
May 17, 2010MFPO 2010, Krakow1 Dwarf galaxies and the Magnetisation of the IGM Uli Klein ?
Studying circumstellar envelopes with ALMA
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Radio halos and relics in galaxy clusters. NGC315: giant (~ 1.3 Mpc) radio galaxy with odd radio lobe (Mack 1996; Mack et al. 1998). precessing jets (Bridle.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
The Radio-IR Correlation: Coupling of Thermal and Non-Thermal Processes Amy Kimball General Exam February 28, 2007.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
Star formation across the mass spectrum Our understanding of low-mass (solar type with masses between 0.1 and 10 M SUN ) star formation has improved greatly.
Hunting for the GRB Progenitor Observations of The GRB Radio Afterglow and Computer Modeling of the Circumburst Medium GTAC ConferenceAugust 29,
Radio continuum, CO, and thermal infrared emission in nearby star-forming galaxies Tony Wong CSIRO Australia Telescope & University of New South Wales.
Lisa Kewley (CfA) Margaret Geller (CfA) Rolf Jansen (ASU) Mike Dopita (RSAA)
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
An Initial Look at the FIR-Radio Correlation within Galaxies using Spitzer Eric Murphy (Yale) Co-Investigators George Helou (SSC/IPAC) Robert Braun (ASTRON)
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Neff et al Redshift Magnelli et al ULIRGs LIRGs Normal.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
THE FAR-INFRARED FIR = IRAS region ( micron) TIR = micron (1 micron = 1A/10^4) Silva et al Lambda (micron) Log λ L.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
VLASS – Galactic Science Life cycle of star formation in our Galaxy as a proxy for understanding the Local Universe legacy science Infrared GLIMPSE survey.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Extragalactic Source.
The Earliest Stages of Massive Star Cluster Evolution Kelsey Johnson, NRAO & U.Wisconsin The New Radio Universe, AAS 200.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
National Radio Astronomy Observatory Dark Energy: Constraints from the Hubble Constant Jim Condon
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
A study of the Molecular-FIR-Radio correlation at small scales in the Galaxy Mónica Ivette Rodríguez Dr. Laurent Loinard (UNAM - México) Dr. Tommy Wiklind.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
The X-ray Universe Sarah Bank Presented July 22, 2004.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
December 17, 2008 The EVLA Vision Galaxies Through CosmicTime 1 Microjansky Radio Sources: AGN or Star Formation? Ken Kellermann & EdFomalont NRAO in collaboration.
Chapter 11 The Interstellar Medium
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Low-luminosity Extragalactic H 2 O Masers Yoshiaki Hagiwara ASTRON.
National Radio Astronomy Observatory EVLA Workshop Deeper Knowledge Through Confusion Jim Condon.
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
Cosmic-Ray Acceleration in galactic Interactions and its Implications Tijana Prodanović, University of Novi Sad Darko Donevski, Laboratoire d'Astrophysique.
Michael RupenEVLA Phase II Definition Meeting Aug 23 – 25, EVLA Phase II Scientific Overview Michael P. Rupen.
H.E.S.S. Blazar Observations:
Feedback in Starburst Galaxies
The µJy Sky and the Radio-FIR relation vs. z
Science from Surveys Jim Condon NRAO, Charlottesville.
ALMA: Imaging the cold Universe
NRAO-CV Lunch Talk June 2017
1.4 GHz Source Counts (Hopkins 2000)
Cooperate with X-L. Chen , Q. Yuan, X-J. Bi, Z-Q. Shen
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Cosmic rays, γ and ν in star-forming galaxies
A Search for water masers in High-redshift un-beamed AGNs: T. Ghosh, S
ALMA: Imaging the cold Universe
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Millimeter Megamasers and AGN Feedback
Presentation transcript:

Radio Emission in Galaxies Jim Condon NRAO, Charlottesville

“The” historical, empirical, global FIR/radio flux-density correlation for star-forming galaxies at z ~ 0 q FIR = log (FIR / S 1.4 ) ~ 2.3 MPI Heidelberg 2010 Feb 222

How might we update this FIR/radio correlation to make it a better tracer of star formation? Why 1.4 GHz? Why 60/100 microns? How can we reduce known limitations? How can we improve the local FIR/radio correlation within galaxies? How can we avoid contamination by old stars and AGNs? How can the correlation best be extended to higher redshifts? How can we best use new instruments (e.g., EVLA, ALMA)? MPI Heidelberg 2010 Feb 223

The mouse and the elephant MPI Heidelberg 2010 Feb 224

FIR/radio correlation: FIR/radio astronomers see the same star-forming galaxy populations MPI Heidelberg 2010 Feb 225

Radio luminosity density functions yield star-formation rate densities and their evolution MPI Heidelberg 2010 Feb 226 Smolcic et al. 2009, ApJ, 690, 610

Global radio emission in star-forming galaxies ~ 90% synchrotron radiation at 1.4 GHz Problems AGN contamination? ~ 90% diffuse Poorly understood Not optically thin? Why not study free-free emission at higher frequencies instead? MPI Heidelberg 2010 Feb 227

AGN contamination, especially in radio flux-limited samples MPI Heidelberg 2010 Feb 228

Dust temperature and ionization: extended starburst versus compact AGN MPI Heidelberg 2010 Feb 229

q FIR is a better AGN indicator than q 25 or q 12 MPI Heidelberg 2010 Feb 2210

Radio emission from a Seyfert galaxy Predominantly nonthermal radio contamination by an AGN lowers the far- infrared/radio ratio but does not affect the far- infrared/free-free radio ratio. MPI Heidelberg 2010 Feb 2211

Basic conspiracy theories Calorimeter theory (Völk, H. J. 1989, A&A, 218, 67) CR electrons accelerated in SNRs of dust-heating massive stars Energy losses primarily radiative above ν ~ 5 GHz, fixed IC/synchrotron ratio implies fixed U rad /U B ~ 2 or 3, steady SFR over few X 10 7 years, steep radio spectra. Leaky Box theory (Chi, X., & Wolfendale, A. W. 1990, MNRAS, 245, 101) Equipartition of CRs and ISM B fields in a very leaky calorimeter Flatter radio spectra, q decreases with luminosity when L < solar. Mitigating factors (Lacki et al., arXiv: , ) Other CR losses (e.g., bremsstrahlung keeps radio spectra flatter) and sources (secondary electrons from CR proton collisions, pion decay; gamma rays seen by Fermi in M82 and NGC 253 by Abdo et al. 2010, ApJ, 709, L152) UV escapes from CR-leaky dwarf galaxies (Bell, E. F. 2003, ApJ, 586, 794) MPI Heidelberg 2010 Feb 2212

Infrared Emission, ISM, and Star Formation: Why bother with (nonthermal) radio emission? Aperture synthesis: high angular resolution, accurate absolute positions, high sensitivity, and high dynamic range, but… at short wavelengths, the angular resolution is often too high and the surface-brightness sensitivity too low Astrophysical constraints implied by the FIR/radio correlation Use “failures” to find and study unusual starbursts MPI Heidelberg 2010 Feb 2213

Physical constraints from images at sub- arcsec resolution MPI Heidelberg 2010 Feb 2214 (Arp 220) (Mrk 231)(IC 694) FIR T b ~ T color so τ > 1 at λ < 25μ B IC ~ B min E ~ milliG Radio size << thermal FIR size so AGN Radio T b ~ 10 4 K so τ ~ 1 implies thermal (not AGN)

Compact starbursts: higher q fir caused by finite opacity at < 2 GHz and < 25 μ m MPI Heidelberg 2010 Feb 2215

λ= 18 cm VLBI image of Arp 220 SNe, no AGN MPI Heidelberg 2010 Feb 2216 Lonsdale et al. 2006, ApJ, 647, 185

Back to the future: study star formation via the FIR/thermal radio correlation MPI Heidelberg 2010 Feb 2217 Harwit & Pacini 1975, ApJ, 200, 127L Spectrum of the Galactic HII region W3 q ~ 3.3

Example: NGC 4449 MPI Heidelberg 2010 Feb 2218 Reines et al. 2008, AJ, 135, 2222 VLA image with 1.3 arcsec ~ 25 pc resolution

EVLA and ALMA: New era for radio MPI Heidelberg 2010 Feb 2219