(Primordial Nucleosynthesis*) B. Kämpfer Research Center Rossendorf/Dresden & Technical University Dresden - Expanding Universe - Prior to Nucleosynthesis.

Slides:



Advertisements
Similar presentations
B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Indian Summer School 2011 Extreme.
Advertisements

Matthew von Hippel 1. Outline What is Big Bang Nucleosyntheis? How does it work? How can we check it? The Primordial Lithium Problem Problem or problem?
Objectives: 1. relate the cosmological principle to isotropy and homgeneity of the universe. 2. understand how Hubble’s law is used to map the universe,
What mass are the smallest protohalos in thermal WIMP dark-matter models? Kris Sigurdson Institute for Advanced Study Space Telescope Science Institute.
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
ORIGIN OF THE UNIVERSE P In the beginning, God created the heaven and the earth; and the earth was without form and void; and darkness was upon the face.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Lecture 3: Big Bang Nucleosynthesis Last time: particle anti-particle soup --> quark soup --> neutron-proton soup. Today: –Form 2 D and 4 He –Form heavier.
Age, Evolution, and Size of the Cosmos Szydagis and Lunin.
NEUTRINOS AND COSMOLOGY STEEN HANNESTAD AARHUS UNIVERSITY 11 OCTOBER 2010 e    
Early Universe Chapter 38. Reminders Complete last Mallard-based reading quiz before class on Thursday (Ch 39). I will be sending out last weekly reflection.
Time dependence of SM parameters. Outline Dirac´s hypothesis SM parameters Experimental access to time dependence  laboratory measurements  Quasar absorption.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
Andreas Ringwald, DESY 27 th DESY PRC Closed Session, DESY, Hamburg, 26 October 2011 Towards a comprehensive summary Physics Case for WISP Searches.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Histoire de l’univers infinite, finite, infinite,.
Advances in contemporary physics and astronomy --- our current understanding of the Universe Lecture 5: Evolution of Early Universe April 30 th, 2003.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 15; March
Histoire de l’univers infinite, finite, infinite,.
Slides for Bochum Evolution of Abundances D Be mass fraction 0.
BBN, NEUTRINOS, AND THE CBR Gary Steigman (with J. P. Kneller & V. Simha) Center for Cosmology and Astro-Particle Physics Ohio State University PPC 2007,
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
Heavy Element Nucleosynthesis s-process r-process p-process NSE Iron Group Hydro Static Nucl.
After their creation, neutrons start to decay and can only be save in atomic nuclei – specifically Helium.
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
Astro-2: History of the Universe Lecture 12; May
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Theory on the Formation of the Universe
Big Bang timeline. Big Bang Timeline 13.7 billion years ago – Before the Big Bang, the universe was a hot point ( ) of pure energy : Tremendous levels.
YET ANOTHER TALK ON BIG BANG NUCLEOSYNTHESIS G. Mangano, INFN Naples STATUS OF BIG BANG NUCLEOSYNTHESIS.
Hubble’s Law Our goals for learning What is Hubble’s Law?
We don’t know, all previous history has been wiped out Assume radiation dominated era We have unified three of the forces: Strong, Electromagnetic, and.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Exploring the Early Universe Chapter Twenty-Nine.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
BIG BANG NUCLEOSYNTHESIS CONFRONTS COSMOLOGY AND PARTICLE PHYSICS Gary Steigman Departments of Physics and Astronomy Center for Cosmology and Astro-Particle.
Cosmology and Dark Matter I: Einstein & the Big Bang by Jerry Sellwood.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Today: “Nucleosynthesis… another phase change in early universe… and why is the Universe so Flat?” HW for next time: Onion, “the nucleus and forces of.
More Big Bang Big Bang Nucleosynthesis Problems with the Big Bang.
Cosmology, Cosmology I & II Fall Cosmology, Cosmology I & II  Cosmology I:  Cosmology II: 
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
Big Bang Nucleosynthesis (BBN) Eildert Slim. Timeline of the Universe 0 sec Big Bang: Start of the expansion secPlanck-time: Gravity splits off.
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
Chapter 17 The Beginning of Time. Running the Expansion Backward Temperature of the Universe from the Big Bang to the present (10 10 years ~ 3 x
More Big Bang Big Bang Nucleosynthesis Problems with the Big Bang.
1 Lecture-04 Big-Bang Nucleosysthesis Ping He ITP.CAS.CN
NEUTRINO DECOUPLE as Hot DM Neutrinos are kept in thermal equilibrium by the creating electron pairs and scattering (weak interaction): This interaction.
BBN abundance observations Karl Young and Taryn Heilman Astronomy 5022 December 4, 2014.
The Universe is expanding The Universe is filled with radiation The Early Universe was Hot & Dense  The Early Universe was a Cosmic Nuclear Reactor!
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
B. Kämpfer | Institut für Strahlenphysik | Hadronenphysik | Helmholtz-Zentrum Dresden-Rossendorf B. Kämpfer Kolloquium Ilmenau 2012 Vom LHC.
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
1 Astroparticle Physics (1/3) Nathalie PALANQUE-DELABROUILLE CEA-Saclay CERN Summer Student Lectures, August )What is Astroparticle Physics ? Big.
Neutrino Cosmology STEEN HANNESTAD NBI, AUGUST 2016 e    
Big Bang Nucleosynthesis: Theory vs. Observation
Big Bang: timeline.
E = mc2 The most well-known yet misunderstood scientific equation
COSMOLOGY.
QCD & cosmology The quest for cosmological signals of QCD dynamics
NEUTRINOS AND BBN ( & THE CMB) Gary Steigman
Early Universe.
Recombination t = 380 ky T = 4000 K
PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS
Presentation transcript:

(Primordial Nucleosynthesis*) B. Kämpfer Research Center Rossendorf/Dresden & Technical University Dresden - Expanding Universe - Prior to Nucleosynthesis - First Three Minutes: Creating Light Nuclei * Based on Ms. of W. Wustmann, July 22, 2005 BBN

Albert Einstein, : - Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt - Die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen - Elektrodynamik bewegter Körper - Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? 1915:

Framework/Propositions 1. Einstein Equations Hold for Universe 2. Cosmological Principle Homogeneity & Isotropy of 3D 4. --> Friedmann Equations 3. Iso-entropic Expansion

Expanding Universe larger e,p  faster cooling: Issues: Nucleosynthesis: test of expansion dynamics CMB: 300,000 years, Now:

Prior to Nucleosynthesis 1. Confinement: Hadrosynthesis BK, Bluhm, 2005

2. Strongly Interacting Matter quarks gluons confinement

temperature evolution strangeness evolution strangeness changing weak interactions

3. Radiation Universe

Stretching of Distances T = 170 MeV 5 m1 fm fm1 fm q q g 1000 fm q T = 2.3 x 10 MeV -10 On averageOn Earth In nuclei & neutron stars BBB

The Universe as Reactor Friedmann: T(t) from D: baryometer 4He: chronometer only destruction after BNN

Primordial Nuclear Network 2.  D, 4.  3He, 8.  T, 6.  4He, 7.  7Li Dominant Channels (strong int./QCD): T < 1 MeV: e+ e- annihilation (QED) nu decoupling (e.w. int.)

p n DT He Be Li Nollett-Burles

Rate Equations for 2  2 Processes rates (T) Init. Conds.: earlier equilibrium values add decays integrate up to freeze-out done T(t)

Survey on Data Nollett-Burles 2000

freeze-in all other parameters and consider only the impact of this reaction poor data samples:

Evolution of Abundances D Be mass fraction

Cosmic Concordance?  new physics beyond Standard Model? Xdimensions, more neutrinos, axions, SUSY particles, G(t),...

WMAP: Precision Cosmology time BBN

Knowing only Photo Dissociation Data Bishop 50 Shinohara 49 de Graeve 92 Role of n(p,D)gamma

Knowing more Data detailed balance: S n p D

error bars suppressed EFT: the tool of strong interaction at low energies adjusted to Cox 65 low energy: high energy: N isovector mag. moment Low Energy Data np  D gamma Bethe 49

data too scarce for precision cosmology new measurements at ELBE Grosse, Beyer & Co „GamoW window“

FZ Rossendorf ELBE Bremsstrahlung cave: p n D 1. D at rest: T_p, T_n 2. Superposition of various beam energies  thermal spectrum A. Wagner

FZ Rossendorf ELBE nTOF cave n p D pulsed n source: A. Junghans J. Klug

Previous Measurements Suzuki et al. 95: Hara et al. 03: Moreh et al. 89: Nagai et al. 97: Cokinos, Melkonian 77: other exps.: M1 vs. E1

Xsection  R factor  Rate ENDF

Using Rates in BBN123 5% lowering of 7Li (relative to SKM&EFT)

Sensitivity Function measure here!

Neutron Life Time nearly all n are in 4He: Y(4He) depends on (other abundances are robust) and also on fastBBN

Number of Light Neutrinos

Conclusions more data for gamma D  n p at E_gamma <,= 2.32 MeV: pin down primordial 7Li abundance below a 5% level more precise data for other reactions & more precise observational data:  NEW PHYSICS? BBN vs. CMB

Deviations of Data and SKM(5): R Factor 13%

WMAP sec sec Mathews,Kajino,Shima 05 Steigman 05 9 orders of magnitude BBN with eta(WMAP) Helium-4 mass fraction eta from BBN adjusted to obs. Metal-poor Extragalactic H II regions

Deuteron Abundance: Observations BBN with eta_10=6.1 X = metallicity (O,Si)

Impact of Changed Xsections 10% change of rate