Logarithms 2.5 Chapter 2 Exponents and Logarithms 2.5.1

Slides:



Advertisements
Similar presentations
Graphing Sine and Cosine Functions
Advertisements

Graphs of Exponential and Logarithmic Functions
Logarithmic Functions Section 3.2. Objectives Rewrite an exponential equation in logarithmic form. Rewrite a logarithmic equation in exponential form.
Logarithmic Functions. Definition of a Logarithmic Function For x > 0 and b > 0, b = 1, y = log b x is equivalent to b y = x. The function f (x) = log.
Logarithmic Functions
4.3 Logarithmic Functions and Graphs Do Now Find the inverse of f(x) = 4x^2 - 1.
Logarithmic Functions & Their Graphs
5.2 Logarithmic Functions & Their Graphs
Logarithmic Functions Section 2. Objectives Change Exponential Expressions to Logarithmic Expressions and Logarithmic Expressions to Exponential Expressions.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
4.2 Logarithmic Functions
Logarithmic Functions (Day 1)
Sullivan PreCalculus Section 4.4 Logarithmic Functions Objectives of this Section Change Exponential Expressions to Logarithmic Expressions and Visa Versa.
Chapter 4.3 Logarithms. The previous section dealt with exponential function of the form y = a x for all positive values of a, where a ≠1.
LOGS EQUAL THE The inverse of an exponential function is a logarithmic function. Logarithmic Function x = log a y read: “x equals log base a of y”
Logarithms.
FUNDAMENTALS OF ALGEBRA 2A CHAPTER 8 POWERPOINT PRESENTATION
Logarithmic Functions. Logarithm = Exponent Very simply, a logarithm is an exponent of ten that will produce the desired number. Y = Log 100 means what.
Lesson 5-6: Logarithms and Logarithmic Functions
STUDENTS WILL BE ABLE TO: CONVERT BETWEEN EXPONENT AND LOG FORMS SOLVE LOG EQUATIONS OF FORM LOG B Y=X FOR B, Y, AND X LOGARITHMIC FUNCTIONS.
Log a x y. Recognize and evaluate logarithmic functions with base a Graph logarithmic functions Recognize, evaluate, and graph natural logarithmic functions.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
Warm-up Solve: log3(x+3) + log32 = 2 log32(x+3) = 2 log3 2x + 6 = 2
7-3 Logarithmic Functions Today’s Objective: I can write and evaluate logarithmic expressions.
Section 6.3 – Exponential Functions Laws of Exponents If s, t, a, and b are real numbers where a > 0 and b > 0, then: Definition: “a” is a positive real.
Unit 5: Modeling with Exponential & Logarithmic Functions Ms. C. Taylor.
Notes Over 8.4 Rewriting Logarithmic Equations Rewrite the equation in exponential form.
6.3 Logarithmic Functions. Change exponential expression into an equivalent logarithmic expression. Change logarithmic expression into an equivalent.
6.2 Exponential Functions. An exponential function is a function of the form where a is a positive real number (a > 0) and. The domain of f is the set.
Do Now (7.4 Practice): Graph. Determine domain and range.
Section 9.3 Logarithmic Functions  Graphs of Logarithmic Functions Log 2 x  Equivalent Equations  Solving Certain Logarithmic Equations 9.31.
10.2 Logarithms and Logarithmic Functions Objectives: 1.Evaluate logarithmic expressions. 2.Solve logarithmic equations and inequalities.
PRE-AP PRE-CALCULUS CHAPTER 3, SECTION 3 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS
Logarithms Exponential Equations: Logarithmic Equations: Exponent Base Exponent What it equals.
STUDENTS WILL BE ABLE TO: CONVERT BETWEEN EXPONENT AND LOG FORMS SOLVE LOG EQUATIONS OF FORM LOG B Y=X FOR B, Y, AND X LOGARITHMIC FUNCTIONS.
5.2 Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate,
Chapter 4 – Exponential and Logarithmic Functions Logarithmic Functions.
Lesson 3.2 Read: Pages Handout 1-49 (ODD), 55, 59, 63, 68, (ODD)
Algebra II 7.4: Evaluate Logarithms HW: None Chapter 7 Test: , 7.6: Tuesday, 3/3 Fire:
10.1/10.2 Logarithms and Functions
4.3 – Logarithmic functions
The Logarithm as Inverse Exponential Function Recall: If y is a one to one function of x, to find the inverse function reverse the x’s and y’s and solve.
4.4 Logarithmic Functions Morgan From his TV show, what is Dexter’s last name?
Solving Logarithmic Equations
2.2.1 MATHPOWER TM 12, WESTERN EDITION 2.2 Chapter 2 Exponents and Logarithms.
4.2 Logarithmic Functions
8.4 Logarithmic Functions
Exponents – Logarithms xy -31/8 -2¼ ½ xy 1/8-3 ¼-2 ½ The function on the right is the inverse of the function on the left.
Algebra 2 Notes May 4,  Graph the following equation:  What equation is that log function an inverse of? ◦ Step 1: Use a table to graph the exponential.
5.0 Properties of Logarithms AB Review for Ch.5. Rules of Logarithms If M and N are positive real numbers and b is ≠ 1: The Product Rule: log b MN = log.
2.6.1 MATHPOWER TM 12, WESTERN EDITION 2.6 Chapter 2 Exponents and Logarithms.
Math – Exponential Functions
2.1 MATHPOWER TM 12, WESTERN EDITION Chapter 2 Exponents and Logarithms.
LEQ: How do you evaluate logarithms with a base b? Logarithms to Bases Other Than 10 Sec. 9-7.
LEQ: HOW DO YOU EVALUATE COMMON LOGARITHMS? Common Logarithms Sec. 9-5.
4.2 Logarithms. b is the base y is the exponent (can be all real numbers) b CANNOT = 1 b must always be greater than 0 X is the argument – must be > 0.
LEQ: What is the process used to evaluate expressions containing the natural logarithm?
2.5.1 MATHPOWER TM 12, WESTERN EDITION 2.5 Chapter 2 Exponents and Logarithms.
Goals:  Understand logarithms as the inverse of exponents  Convert between exponential and logarithmic forms  Evaluate logarithmic functions.
Logarithmic Functions We know: 2 3 =8 and 2 4 =16 But, for what value of x does 2 x = 10? To solve for an exponent, mathematicians defined logarithms.
Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate, and.
Logarithmic Functions
6.1 - Logarithmic Functions
Logarithmic Functions
Unit 8 [7-3 in text] Logarithmic Functions
Logarithmic Functions and Their Graphs
Exponents and Logarithms
6.3 Logarithms and Logarithmic Functions
6.1 - Logarithmic Functions
Logarithmic Functions
Presentation transcript:

Logarithms 2.5 Chapter 2 Exponents and Logarithms 2.5.1 MATHPOWERTM 12, WESTERN EDITION 2.5.1

Logarithmic Functions A logarithmic function is the inverse of an exponential function. For the function y = 2x, the inverse is x = 2y. In order to solve this inverse equation for y, we write it in logarithmic form. x = 2y is written as y = log2x and is read as “y = the logarithm of x to base 2”. y = 2x 1 2 4 8 16 1 2 4 8 16 y = log2x (x = 2y) 2.5.2

Graphing the Logarithmic Function y = x y = 2x y = log2x 2.5.3

Comparing Exponential and Logarithmic Function Graphs y = 2x y = log2x The y-intercept is 1. There is no y-intercept. There is no x-intercept. The x-intercept is 1. The domain is {x | x Î R}. The domain is {x | x > 0}. The range is {y | y Î R}. The range is {y | y > 0}. There is a horizontal asymptote at y = 0. There is a vertical asymptote at x = 0. The graph of y = 2x has been reflected in the line of y = x, to give the graph of y = log2x. 2.5.4

2 is the exponent of the power, to which 7 is raised, to equal 49. Logarithms Consider 72 = 49. 2 is the exponent of the power, to which 7 is raised, to equal 49. The logarithm of 49 to the base 7 is equal to 2 (log749 = 2). Exponential notation Logarithmic form log749 = 2 72 = 49 In general: If bx = N, then logbN = x. State in logarithmic form: State in exponential form: a) 63 = 216 log6216 = 3 a) log5125 = 3 53 = 125 log416 = 2 b) log2128= 7 27 = 128 b) 42 = 16 2.5.5

State in logarithmic form: Logarithms State in logarithmic form: a) b) log2 32 = 3x + 2 2.5.6

Evaluating Logarithms Note: log2128 = log227 = 7 log327 = log333 = 3 log2128 = x 2x = 128 2x = 27 x = 7 log327 = x 3x = 27 3x = 33 x = 3 3. log556 = 6 logaam = m 4. log816 5. log81 log816 = x 8x = 16 23x = 24 3x = 4 log81 = x 8x = 1 8x = 80 x = 0 loga1 = 0 2.5.7

Evaluating Logarithms 6. log4(log338) 7. = x log48 = x 4x = 8 22x = 23 2x = 3 2x = 1 9. Given log165 = x, and log84 = y, express log220 in terms of x and y. 8. log165 = x log84 = y = 23 = 8 16x = 5 24x = 5 8y = 4 23y = 4 log220 = log2(4 x 5) = log2(23y x 24x) = log2(23y + 4x) = 3y + 4x 2.5.8

Base 10 logarithms are called common logs. Evaluating Base 10 Logs Base 10 logarithms are called common logs. Using your calculator, evaluate to 3 decimal places: a) log1025 b) log100.32 c) log102 1.398 -0.495 0.301 Evaluate log29: log29 = x 2x = 9 Change of base formula: log 2x = log 9 xlog 2 = log 9 x = 3.170 2.5.9

Given log3a = 1.43 and log4b = 1.86, determine logba. Evaluating Logs Given log3a = 1.43 and log4b = 1.86, determine logba. log3a = 1.43 a = 31.43 log a = 1.43log 3 log4b = 1.86 b = 41.86 log b = 1.86 log 4 logba = 0.609 2.5.10

Assignment Suggested Questions: Pages 98-100 1-31 odd, 33-42, 47, 50 a, 52 a 2.5.11