J. B. Natowitz Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station Experimental Investigations of The Equation of State.

Slides:



Advertisements
Similar presentations
Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Advertisements

Construct an EOS for use in astrophysics: neutron stars and supernovae wide parameter range: proton fraction Large charge asymmetry: thus investigation.
Isospin Dependence of Intermediate Mass Fragments in 124Sn, 124Xe + 124Sn, 112Sn D. V. Shetty, A. Keksis, E. Martin, A. Ruangma, G.A. Souliotis, M. Veselsky,
Systematics of Temperature Measurements with ALADIN ALADIN S114 Spring 1993.
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
Clearly state goals and open questions. Questions Which exp. should we perform in order to know how far (how to measure this distance?) we are from eqil.(randomized)
Preliminary results from a study of isospin non-equilibrium E. Martin, A. Keksis, A. Ruangma, D. Shetty, G. Souliotis, M. Veselsky, E. M. Winchester, and.
Transport phenomena in heavy-ion reactions Lijun Shi NSCL MSU and Physics Department, McGill University Catania, Italy, Jan. 23, 2004.
Enhancement of hadronic resonances in RHI collisions We explain the relatively high yield of charged Σ ± (1385) reported by STAR We show if we have initial.
Fragment Isospin as a Probe of Heavy-Ion Collisions Symmetry term of EOS Equilibration “Fractionation” – inhomogeneous distribution of isospin Source composition.
The National Superconducting Cyclotron State University Betty Tsang Constraining neutron star matter with laboratory experiments 2005.
1 Role of the nuclear shell structure and orientation angles of deformed reactants in complete fusion Joint Institute for Nuclear Research Flerov Laboratory.
For more information about the facility visit: For more information about our group visit:
Using GEMINI to study multiplicity distributions of Light Particles Adil Bahalim Davidson College Summer REU 2005 – TAMU Cyclotron Institute.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
J. B. Natowitz CCAST Workshop, Beijing August 2005.
Equation of State of Neutron-Rich Matter in the Relativistic Mean-Field Approach Farrukh J. Fattoyev My TAMUC collaborators: B.-A. Li, W. G. Newton My.
Germany's United States 2 Germany 0 FIFA Women’s World Cup Semifinal.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
Equation of State for nuclear matter: research at CHARMS PART I: Generalities about the Equation of State (EOS) for ordinary matter and for nuclear matter.
Isospin dependence of the nuclear phase transition near the critical point Zhiqiang Chen Institute of Modern Physics (Lanzhou) Chinese Academy of Sciences.
J.B. Natowitz. Correlations – Cluster Formation Bose Condensates Efimov States Superfluidity Perfect Liquid? Perfect Gas ? Few Body Syst.Suppl. 14 (2003)
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Y. G. Ma, CCAST Workshop, Aug 19-21, Beijing 1 Coherent signals of the critical behavior in light nuclear systems Yu-Gang Ma SINAP Shanghai Institute of.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
J. Su( 苏军 ) and F.S. Zhang( 张丰收 ) College of Nuclear Science and Technology Beijing Normal University, Beijing, China Tel: ,
Ln(R 12 ) N Alan McIntosh, Yennello Research Group, TAMU-CI. Nuclear Physics Town Meeting, Aug 2014, College Station, TX Asymmetry Dependence of Thermodynamic.
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
Dynamical fragment production in non-central heavy-ion collisions E *, J PLF* TLF* Sylvie Hudan, Indiana University EvaporationBinary breakupfragmentation.
Motivation Current status Outlook This work was supported in part by: The Robert A. Welch Foundation: Grant Number A-1266 and, The Department of Energy:
Dynamics effect and evolution of isoscaling on the Quantum Molecular Dynamics model Wendong TIAN, Yugang MA, Xiangzhou CAI, Jingen CHEN, Jinhui CHEN, Deqing.
Evidence of Critical Behavior in the Disassembly of Light Nuclei with A ~ 36 Yu-Gang Ma Texas A&M University, Cyclotron Institute, USA Shanghai Institute.
Charge Equilibration Dynamics: The Dynamical Dipole Competition of Dissipative Reaction Mechanisms Neck Fragmentation M.Di Toro, PI32 Collab.Meeting, Pisa.
Isospin study of projectile fragmentation Content 1 、 Isospin effect and EOS in asymmetry nuclei 2 、 Isotope Yields in projectile ragmentation 3 、 Summary.
Light nuclei production in heavy-ion collisions at RHIC Md. Rihan Haque, for the STAR Collaboration Abstract Light nuclei (anti-nuclei) can be produced.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
N/Z Dependence of Isotopic Yield Ratios as a Function of Fragment Kinetic Energy Carl Schreck Mentor: Sherry Yennello 8/5/2005 J. P. Bondorf et al. Nucl.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
Hua Zheng a, Gianluca Giuliani a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy. 1 Coulomb Correction to the.
Nuclear Isovector Equation-of-State (EOS) and Astrophysics Hermann Wolter Dep. f. Physik, LMU Topics: 1.Phase diagram of strongly interacting matter and.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel WPCF 2013 Acireale, Italy 7-Nov-2013 Clustering and Low Density.
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
What nuclear multifragmentation reactions imply for modifications of the symmetry and surface energy in stellar matter Nihal Buyukcizmeci 1,2, A. Ergun.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Properties of clustered nuclear matter in nuclear reactions Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) NUFRA October 2015 Kemer.
Hua Zheng a and Aldo Bonasera a,b a)Cyclotron Institute, Texas A&M University b)LNS-INFN, Catania-Italy Density and Temperature of Fermions.
Zbigniew Chajecki, Low Energy Community Meeting, August 2014 Chemical potential scaling Z. Chajecki et al, ArXiv: , submitted to PRL Scaling properties.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
Effective Nucleon Masses in Compressed and Expanding Neutron-Rich Matter: Motivation Multiple simulations suggest sensitivity of the n/p single and double.
Tetsuya MURAKAMI For SAMURAI-TPC Collaboration Physics Using SAMURAI TPC.
Experimental Reconstruction of Primary Hot Fragment at Fermi Energy Heavy Ion collisions R. Wada, W. Lin, Z. Chen IMP, China – in JBN group.
Chun-Wang Ma( 马春旺 ) Henan Normal University 河南师范大学 (
Investigation of the freeze-out configuration in the 197 Au Au reaction at 23 AMeV A.Sochocka Department of Physics, Astronomy and Applied Computer.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Equation-of-State (EOS) of Nuclear Matter with Light Cluster Correlations Equation-of-State (EOS) of Nuclear Matter with Light Cluster Correlations XLVIII.
Joseph B. Natowitz, Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA Exploring Clustering in Near.
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Understanding the Isotopic Fragmentation of a Nuclear Collision
Shalom Shlomo Cyclotron Institute Texas A&M University
Transverse and elliptic flows and stopping
World Consensus Initiative 2005
Energy Dependence of the Isotopic Composition in Nuclear Fragmentation
Jiansong Wang for NIMROD Collaboration
Cyclotron Institute, Texas A&M University
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
K. Hagel IWNDT 2013 College Station, Texas 20-Aug-2013
K. Hagel Nucleus-Nucleus 2015 Catania, Italy 23-Jun-2015
Tests of the Supernova Equation of State using Heavy Ion Collisions
Presentation transcript:

J. B. Natowitz Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station Experimental Investigations of The Equation of State of Low Density Nuclear Matter

Exploring The Nuclear Matter Phase Diagram With Collisional Heating Collisions of normal density nuclei create initially compressed and excited systems, which expand and cool. During this process, the properties of the expanding system is manifested in the matter flow, in the energy spectra, and in the yield patterns and nature of produced species which emerge from the collision zone. AMD Calculation TIMETIME Dynamic Evolution Excitation Energy ? Temperatures ? Degree of expansion Composition ? Chemical and Thermal Equilibrium ? Equation of State ? Liquid-gas phase transition?

Light Charged Particle Emission - High Total Multiplicity Collisions NIMROD 4 Pi Charged Particles 4 Pi Neutrons

Event Selection Neutron + Charged Particle multiplicity distribution for 64 Zn+ 124 Sn. Bin4 corresponds to the most violent collision events Most Violent Collision 30% Top Highest Multiplicity MnMn M CP

Source Analysis of Emission ( Energy, Angle) Source Fitting – 4 He from 40 Ar Sn PLF Angular Distribution NNTLF Elab, MeV 

Reaction Tomography-Particles TLF NN Experiment From Fitting Velocity Plot Protons 40 Ar+ 124 Sn PLF V parallel V perpendicular Evaporation-like Coalescence NN Sum of Sources

T C =16.6  0.86 MeV Critical Temperature of Symmetric Nuclear Matter Phys.Rev.Lett. 89 (2002) Phys.Rev. C65 (2002) employing Skyrme interactions with the  = 1/6 density dependence, this value of T c leads to K = 232  22 MeV. Using Gogny interactions with  = 1/3 leads to K = 233  37 MeV. These results for K lead to m* value = A value of K = 231  5 MeV, was derived by D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999) by comparison of data for the GMR breathing mode energy of five different nuclei.

K. Hagel et al. Phys. ReV. C (2000) J.B. Natowitz et al., Phys.Rev. C (2002) Derived Average Freeze-Out Densities Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas 47A MeV

R ~ 10 km SUPERNOVA NEUTRON STAR STARS Giant Nuclei And Sites of Nucleosynthesis Large Changes in Temperature, Density, Proton/Neutron content

C.J. HorowitzC.J. Horowitz, A. Schwenk nucl-th/ A. Schwenk

ASTROPHYSICAL EQUATIONS OF STATE AT LOW DENSITY DOMINATED BY ALPHA CLUSTERING Density

Cluster Formation and The Equation of State of Low-Density Nuclear Matter symmetric nuclear matter, T=2, 4, 8 MeV C.J. Horowitz, A. Schwenk nucl-th/ C.J. HorowitzA. Schwenk

. nucl-th/ The Virial Equation of State of Low-Density Neutron Matter C.J. Horowitz and A. SchwenkC.J. HorowitzA. Schwenk Clustered Gas VEOS SFSF SESE T/2 Skyrme, Fermi gas etc. SYMMETRY ENERGY(T,  )

Many Nucear and Astrophysical Phenomena Strongly Affected by the Symmetry Energy At Normal Density a a ~ 23 MeV for Finite Nuclei ~30 MeV for Symmetric Nuclear Matter

NN SOURCE EMISSION- Experimental Data and Calculated Yields from AMD and Chimera QMD Codes Average Freeze-out Density 64Zn + 124Sn ~ 0.06 fm -3 “Gas” density ~ A NN /(A tot -A NN ) * 0.06 fm -3 ~ 0.01 fm -3 COALESCENCE

Isoscaling Analyses and Symmetry Energy A Comparison of the Yields of Emitted Species for Two Different Sources of Similar Excitation Energy and Temperature but Differing in Their Neutron to Proton Ratios M.B. TsangM.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch,W.A. FriedmanC.K. GelbkeW.G. Lynch G. VerdeG. Verde and H.S. Xu, Phys.Rev. C64 (2001) H.S. Xu F sym

T  α ═ (4F / T)[(Z/A) 2 1 – (Z/A) 2 2 ]  n = 0.62 x T 3/2 exp[- 20.6/T] Y( 4 He)/ Y( 3 He) cm -3  p = 0.62 x T 3/2 exp[ -19.8/T] Y( 4 He)/ Y( 3 H) cm -3  nuc tot =  p +  n + 2  d + 3  t + 3  3He + 4   Density LOW DENSITY CHEMICAL EQUILIBRIUM MODEL(Albergo) Temperature T HHe = 14.3/ [ln (1.59R)] R = [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] Isoscaling Analyses and Symmetry Energy

Clusterization in Low Density Nuclear Matter

C.J. HorowitzC.J. Horowitz, A. Schwenk nucl-th/ A. Schwenk Private Communication O’Connor, Schwenk, Horowitz Manuscript in Preparation August 2007

Neutron Rich Proton Rich

p Sn and 124 Sn d Sn and 124 Sn 3 He Sn and 124 Sn 4 He Sn and 124 Sn 10 B Sn and 124 Sn 20 Ne Sn and 124 Sn 40 Ar Sn and 124 Sn 64 Zn+ 112 Sn and 124 Sn Projectile Energy - 47A Mev Reaction System List Thesis – L. Qin TAMU

V par cm/ns V perp cm/ns Significant Temperature Evolution With Velocity Relatively Small Changes with Projectile Size DOUBLE ISOTOPE RATIO T HHe CHEMICAL EQUILIBRIUM TEMPERATURES T HHe = 14.3/ [ln (1.59R)] (albergo) R = [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] Reaction Tomography-Temperatures

“Gas” Density TLF REMOVED L. Qin – PhD Thesis, In Progress CHEMICAL EQUILIBRIUM DENSITIES (Albergo) FROM ISOTOPE RATIOS Fm -3 Reaction Tomography-Densities

64 Zn 40 Ar 20 Ne 10 B 4 He DERIVED VALUES OF F sym as a FUNCTION of VELOCITY 47 MeV/u Projectiles on 112 Sn, 124 Sn V parallel NN V perpendicular

K. Hagel et al. PHYSICAL REVIEW C (2000) J.B. Natowitz et al., Phys.Rev. C66 (2002) Derived Average Freeze-Out Densities Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas

E sym(nuclides) = E sym(NM) ( /A 1/3 ) P. Danielewicz

Few Body Syst.Suppl. 14 (2003) Eur.Phys.J. A22 (2004) M. Beyer, G. Roepke et al., Phys.Lett. B488, (2000) IN MEDIUM BINDING ENERGIES and MOTT TRANSITION

Alpha Mass Fractions

Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/ Light Clusters in Nuclear Matter of Finite Temperature

Correlations Bose Condensates Superfluidity Efimov States

E. Bell 1, M. Cinausero 2, Y. El Masri 6,D. Fabris 3, K. Hagel 1, J. Iglio 1, A. Keksis 1, T. Keutgen 6, M. Lunardon 3, Z. Majka 4, A. Martinez-Davalos, 5 A. Menchaca-Rocha 5, S. Kowalski 1,T. Materna 1, S. Moretto 3, J. B. Natowitz 1, G. Nebbia 3, L. Qin 1, G. Prete, 2 R. Murthy 1, S. Pesente 3, V. Rizzi, 3 D. V. Shetty 1, S. Soisson 1, B. Stein 1, G. Souliotis 1, P. M. Veselsky 1,A. Wieloch 1, G. Viesti 3, R. Wada 1, J. Wang 1, S. Wuenshel 1, and S. J. Yennello 1 1 Texas A&M University, College Station, Texas 2 INFN Laboratori Nazionali di Legnaro, Legnaro, Italy 3 INFN Dipartimento di Fisica, Padova, Italy 4 Jagellonian University, Krakow, Poland 5 UNAM, Mexico City, Mexico 6 UCL, Louvain-la-Neuve, Belgium

Major Contributors M. Barbui, A. Bonasera, C. Bottosso, M. Cinausero, Z. Chen, D. Fabris, Y. El Masri, K. Hagel, T. Keutgen, S. Kowalski, M. Lunardon, Z. Majka, S. Moretto, G. Nebbia, J. Natowitz L. Qin, S. Pesente, G. Prete, V. Rizzi, P. Sahu, S. ShlomoJ. Wang, G. ViestiM. CinauseroZ. ChenD. FabrisY. El MasriK. HagelT. KeutgenS. KowalskiM. LunardonS. MorettoG. NebbiaJ. NatowitzL. QinS. PesenteG. PreteV. RizziG. Viesti S. Shlomo, A. Ono, G. Roepke A. Schwenk, E. O’Connor AND THE NIMROD COLLABORATION TAMU, PADOVA, LEGNARO, KRAKOW, LOUVAIN la NEUVE, CATANIA, LANZHOU