1 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Lecture notes: Prof. Maurício V. Donadon NUMERICAL METHODS IN APPLIED STRUCTURAL.

Slides:



Advertisements
Similar presentations
NONLINEAR DYNAMIC FINITE ELEMENT ANALYSIS IN ZSOIL :
Advertisements

Finite element method Among the up-to-date methods of stress state analysis, the finite element method (abbreviated as FEM below, or often as FEA for analyses.
Modeling of Neo-Hookean Materials using FEM
Lecture Objectives: Simple algorithm Boundary conditions.
Ordinary Differential Equations
LECTURE SERIES on STRUCTURAL OPTIMIZATION Thanh X. Nguyen Structural Mechanics Division National University of Civil Engineering
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Some Ideas Behind Finite Element Analysis
Engineering Optimization – Concepts and Applications Engineering Optimization Concepts and Applications Fred van Keulen Matthijs Langelaar CLA H21.1
Chapter 17 Design Analysis using Inventor Stress Analysis Module
Overview Class #6 (Tues, Feb 4) Begin deformable models!! Background on elasticity Elastostatics: generalized 3D springs Boundary integral formulation.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
FEM and X-FEM in Continuum Mechanics Joint Advanced Student School (JASS) 2006, St. Petersburg, Numerical Simulation, 3. April 2006 State University St.
ECIV 720 A Advanced Structural Mechanics and Analysis Non-Linear Problems in Solid and Structural Mechanics Special Topics.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Finite Element Method in Geotechnical Engineering
01-1 Physics I Class 01 1D Motion Definitions.
02-1 Physics I Class 02 One-Dimensional Motion Definitions.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 10: Solution of Continuous Systems – Fundamental Concepts Mixed Formulations Intrinsic Coordinate.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
INTRODUCTION INTO FINITE ELEMENT NONLINEAR ANALYSES
ECIV 720 A Advanced Structural Mechanics and Analysis Non-Linear Problems in Solid and Structural Mechanics Special Topics.
MCE 561 Computational Methods in Solid Mechanics
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Introduction to Nonlinear Analysis
MANE 4240 & CIVL 4240 Introduction to Finite Elements
1 HOMEWORK 1 1.Derive equation of motion of SDOF using energy method 2.Find amplitude A and tanΦ for given x 0, v 0 3.Find natural frequency of cantilever,
Beam Design for Geometric Nonlinearities
Today’s class Boundary Value Problems Eigenvalue Problems
Lecture Objectives Review SIMPLE CFD Algorithm SIMPLE Semi-Implicit Method for Pressure-Linked Equations Define Residual and Relaxation.
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
PAT328, Section 3, March 2001MAR120, Lecture 4, March 2001 S3-1 MAR120, Section 3, December 2001 SECTION 3 ANALYSIS PROCEDURES.
Haptics and Virtual Reality
Mechanics of Thin Structure Lecture 15 Wrapping Up the Course Shunji Kanie.
Explicit\Implicit time Integration in MPM\GIMP
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION ASEN 5070 LECTURE 11 9/16,18/09.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Illustration of FE algorithm on the example of 1D problem Problem: Stress and displacement analysis of a one-dimensional bar, loaded only by its own weight,
1 Aerospace & Mechanical Engineering Department Continuum Mechanics & Thermomechanics Tel: +32-(0) Chemin des chevreuils 1 Fax: +32-(0)
Lecture Objectives Review Define Residual and Relaxation SIMPLE CFD Algorithm SIMPLE Semi-Implicit Method for Pressure-Linked Equations.
HEAT TRANSFER FINITE ELEMENT FORMULATION
Mallett Technology, Inc.
finite element method 08 - finite element method - density growth - theory.
NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS
HCMUT 2004 Faculty of Applied Sciences Hochiminh City University of Technology The Finite Element Method PhD. TRUONG Tich Thien Department of Engineering.
Lecture 6 - Single Variable Problems & Systems of Equations CVEN 302 June 14, 2002.
1 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS Lecture notes: Prof. Maurício.
1 Non-Linear Piezoelectric Exact Geometry Solid-Shell Element Based on 9-Parameter Model Gennady M. Kulikov Department of Applied Mathematics & Mechanics.
Basic Geometric Nonlinearities Chapter Five - APPENDIX.
Finite Element: Theory, Applications & Implementation Presented By: Arthur Anconetani Barbara Gault Ryan Whitney.
1 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS Lecture notes: Prof. Maurício.
14 - finite element method
Mode Superposition Module 7. Training Manual January 30, 2001 Inventory # Module 7 Mode Superposition A. Define mode superposition. B. Learn.
NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS
AAE 3521 AAE 352 Lecture 08 Matrix methods - Part 1 Matrix methods for structural analysis Reading Chapter 4.1 through 4.5.
PAT328, Section 3, March 2001S4-1MAR120, Section 4, December 2001 SECTION 4 ANALYSIS SETUP.
1 CHAP 3 WEIGHTED RESIDUAL AND ENERGY METHOD FOR 1D PROBLEMS FINITE ELEMENT ANALYSIS AND DESIGN Nam-Ho Kim.
Our task is to estimate the axial displacement u at any section x
Finite Element Method in Geotechnical Engineering
14 - finite element method
Continuum Mechanics (MTH487)
Introduction to Finite Elements
AAE 556 Aeroelasticity Lecture 6 – Multi-DOF systems
Beams and Frames.
Materials Science & Engineering University of Michigan
CHAPTER 1 Force Analysis. Deformation Analysis.
08 - finite element method
Presentation transcript:

1 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Lecture notes: Prof. Maurício V. Donadon NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS

2 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Non-linear static problems

3 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Introduction

4 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Sources of nonlinearities in structural analysis Geometrical non-linearity Non-linear material behaviour Non-linear boundary conditions

5 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities Normal strain-displacement relationships

6 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities Shear strain-displacement relationships

7 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities

8 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour ELASTIC ELASTO-PLASTIC ELASTIC + MICROCRACKING

9 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour

10 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour

11 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear boundary conditions Transient boundary problems: Boundary conditions change during the analysis!!!

12 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear boundary conditions

13 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Solution methods for non-linear static problems

14 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Incremental solutions Iterative solutions Combined incremental/iterative solutions Arc-length method Quasi-static solutions Solution methods

15 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 General form for a static problem K = K 0 f(x) FeFe Example: Linear/Nonlinear Spring

16 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Linear/Nonlinear Spring

17 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 General form for a static problem Example: Linear/Nonlinear Spring Trivial solution: Displacement control Non-trivial solution: Load control which is commonly used in structural analyses!!!

18 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Incremental solution

19 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 INCREMENTAL SOLUTION METHOD BASED ON THE EULER METHOD

20 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 THE EULER METHOD ALGORITHM

21 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

22 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

23 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

24 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Iterative solution

25 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 ITERATIVE SOLUTION BASED ON THE NEWTON RAPHSON METHOD

26 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 THE NEWTON RAPHSON ALGORITHM

27 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

28 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

29 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

30 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Combined incremental/iterative solutions

31 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 COMBINED INCREMENTAL/ITERATIVE SOLUTIONS

32 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 INCREMENTAL/ITERATIVE SOLUTION ALGORITHM

33 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

34 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

35 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

36 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length Method

37 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Highly non-linear structural responses snap-through snap-back

38 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Single DOF

39 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Constraint equation b: scale factor, scale forces to the same order of magnitude of the displacements

40 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Residual force Equations to be solved simultaneously

41 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method

42 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method

43 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Equations to be solved simultaneously Augmented stiffness matrix

44 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Error function computation:

45 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Constant arc-length algorithm:

46 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Variable arc-length algorithm:

47 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method: b=0 The computational cost associated with the inversion of the augmented stiffness matrix during the iterations is very high because the augmented stiffness matrix is neither symmetric nor banded! The scale factor is unknown “a priori” Better solution: Spherical Arc-length!!!!

48 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method

49 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method

50 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method

51 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method

52 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method

53 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method Choosing the root Solution 1Solution 2

54 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method The predictor solution

55 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256

56 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Quasi-static solutions

57 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 DYNAMIC RELAXATION Example: Nonlinear Spring K = K 0 f(x) M F e (t) C

58 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Central difference method DYNAMIC RELAXATION Critical time step computation

59 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Central difference method DYNAMIC RELAXATION Displacement field Velocity field

60 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Damping definition DYNAMIC RELAXATION Critical damping Rayleigh damping

61 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 EXPLICIT TIME INTEGRATION ALGORITHM 1. Initial conditions, v 0, σ 0, n=0, t=0, compute M 2. Compute acceleration a n = M -1 F e,n 3. Update nodal velocities: v n+1/2 = v n+1/2-α + αΔta n 4.α = 1/2 if n=0 5.α = 1 if n>0 6.Update nodal displacements: u n+1 = u n + Δtv n+1/2 7.Compute strains 8.Compute stresses 9.Compute internal forces 10. Compute residual force vector: F i - F e 11.Update counter and time: n = n+1, t = t+Δt 12.If simulation not complete go to step 2

62 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

63 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring

64 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 1.0 N/s

65 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 0.1 N/s

66 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 0.01 N/s

67 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect T low =0.22 T high =0.12

68 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect

69 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect

70 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect

71 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect

72 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Over damping effects in dynamic relaxation Over damping MUST BE AVOIDED in dynamic relaxation methods! Special care must be taken with over damping Over damping increases artificially the internal energy of the system!!!!