Plane Mirror: a mirror with a flat surface

Slides:



Advertisements
Similar presentations
Learning Outcome Draw a ray diagram to find the position, nature and size of the image produced by a concave and convex mirrors.
Advertisements

Chapter 23 Mirrors and Lenses
1 Geometric optics Light in geometric optics is discussed in rays and represented by a straight line with an arrow indicating the propagation direction.
Mirror and Lens Properties. Image Properties/Characteristics Image Type: Real or Virtual Image Orientation: Erect or Inverted Image Size: Smaller, Larger,
Lenses. Transparent material is capable of causing parallel rays to either converge or diverge depending upon its shape.
TOC 1 Physics 212 and 222 Reflection and Mirrors What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
→ ℎ
Light and Optics Mirrors and Lenses. Types of Mirrors Concave mirrors – curve inward and may produce real or virtual images. Convex mirrors – curve outward.
14-3: Curved Mirrors.
Chapter 34: Mirrors 1 We will consider three varieties of mirrors Spherical Concave Mirror Plane Mirror Spherical Convex Mirror Photos from Fishbane,
Chapter 13: Section 3. Learning Targets Describe the difference between a real and a virtual image Draw ray diagrams for objects located at various distances.
Chapter 23 Mirrors and Lenses. Medical Physics General Physics Mirrors Sections 1–3.
Mirrors Law of Reflection The angle of incidence with respect to the normal is equal to the angle of reflection.
Reflection Light incident upon a boundary between
Reflection of Light. When light rays hit an object, they change direction. The type of surface the light encounters determines the type of reflection.
Curved Mirrors.
Curved Mirrors Chapter 13 Section 3. Mirror Terminology  Ccenter of curvature  Rradius of curvature.
air water As light reaches the boundary between two media,
Chapter 23 Mirrors and Lenses.
Light: Geometric Optics
CH 14: MIRRORS & LENSES 14.1: Mirrors. I. Plane Mirrors  Flat, smooth mirror  Creates a virtual image: an image your brain perceives even though no.
Curved Mirrors. Two types of curved mirrors 1. Concave mirrors – inwardly curved inner surface that converges incoming light rays. 2. Convex Mirrors –
Curved Mirrors SNC2P – Optics. Curved Mirrors Curved mirrors are created when you make part of the surface of a sphere reflective There are two types.
Fig Reflection of an object (y) from a plane mirror. Lateral magnification m = y ’ / y © 2003 J. F. Becker San Jose State University Physics 52 Heat.
Physics 110G Light TOC 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Reflection Physics Department, New York City College of Technology.
Chapter 26 Optics I (Mirrors). LIGHT Properties of light: Light travels in straight lines: Laser.
Optics Reflections/Mirrors 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Refraction of Light EM lesson 8.  Thicker in the center than at the edges  Have positive focal lengths  Converge parallel rays of light that pass through.
Convex Mirrors A convex spherical mirror is a mirror whose reflecting surface is an outward-curved segment of a sphere. Also called a diverging mirror.
Curved Mirrors and Ray Diagrams SNC2D. Concave Mirrors A concave mirror is a curved mirror with the reflecting surface on the inside of the curve. The.
Curved Mirrors Part 2 - Convex Mirrors. Review: Reflections in a Plane Mirror.
TopicSlidesMinutes 1 Displacement Vectors Kinematics Graphs Energy Power Springs Shadows 39 9 Field of.
Geometrical Optics (Lecture II)
Ch. 14 Light and Reflection. Flat Mirrors Simplest mirror Object’s image appears behind the mirror Object’s distance from the mirror is represented as.
Spherical Mirrors Spherical mirror – a section of a sphere of radius R and with a center of curvature C R C Mirror.
Ray Model A useful model under certain circumstances to explain image formation. Ray Model: Light travels in straight-line paths, called rays, in ALL.
Mirrors and Lenses.
1 Reflection and Mirrors. 2 The Law of Reflection “ The angle of incidence equals the angle of reflection.”
Chapter 14 Light and Reflection
Image Formation. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction. When we.
Lenses and Mirrors. How does light interact with pinholes? How does light interact with lenses? –___________ How does light interact with mirrors? –___________.
Light: Geometric Optics Chapter Ray Model of Light Light travels in a straight line so a ray model is used to show what is happening to the light.
The Reflection of Light: Mirrors
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
Light wave Recall: Light must reflect off of an object before it can be used to see the object. A flat mirror is called a plane mirror. A plane mirror.
Characteristics & Ray Diagrams
PROOF OF d i = d o ii rr 11 22 . DESCRIPTION OF d i = d o  Ray of light leaves base & strikes mirror at  i (reflected at same  )  Angles.
3/4/ PHYS 1442 – Section 004 Lecture #18 Monday March 31, 2014 Dr. Andrew Brandt Chapter 23 Optics The Ray Model of Light Reflection; Image Formed.
Light and Reflection Curved Mirrors. Concave Spherical Mirrors Concave spherical mirror – an inwardly curved, spherical mirrored surface that is a portion.
Curved Mirrors Chapter 14, Section 3 Pg
Unit 3 – Light & Optics. v  There are five (5) different situations, depending on where the object is located.
Ray Diagrams for Lenses. Convex (Converging) Lenses There are two Focal points One in Front and one Behind Focal point is ½ way between Center of Curvature.
Reflection & Mirrors. Reflection The turning back of an electromagnetic wave (light ray) at the surface of a substance. The turning back of an electromagnetic.
The amount of reflection depends on how different the media are.
Mirrors. Mirrors and Images (p 276) Light travels in straight lines, this is the reason shadows and images are produced (p 277) Real images are images.
Curved Mirrors. Curved Mirrors have as many different uses as plane mirrors. Curved mirrors for this class are spherical mirrors because they have the.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
Curved Mirrors. Images in Mirrors S ize, A ttitude, L ocation, T ype Size –Is the image bigger, smaller or the same size as the object? Attitude –Is the.
Mirrors.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
1 Reflection and Mirrors Chapter The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface is called.
Curved Mirrors
06 – Concave or Converging Mirrors
air water As light reaches the boundary between two media,
Reflections in Mirrors
Reflection.
Mirrors Reflection of Light.
Presentation transcript:

Plane Mirror: a mirror with a flat surface Mirrors Plane Mirror: a mirror with a flat surface Plane mirrors create virtual images. A virtual image is a point at which light rays appear to diverge without doing so.

Plane Mirrors Image Point Source – point at which the object appears to be in the mirror from any vantage point in front of the mirror.

A similar cylinder can be placed behind a mirror to indicate the image point of the cylinder placed in front of the mirror

The image formed by a plane mirror appears to be at a distance behind the mirror that is equal to the distance of the object in front of the mirror.

Spherical Mirrors Converging Mirrors – A mirror where parallel light rays will intersect at a common point (focal point) upon reflection. Such mirrors are also referred to as a Concave Mirrors Diverging Mirror – A mirror where parallel rays diverge upon reflection, as though the reflected rays come from a focal point behind the mirror. Such mirrors are also referred to as Convex Mirrors

Ray Diagrams Three types of rays used to find the location and magnitude of an image Parallel Ray is a ray that is incident along a path parallel to the optic axis and is reflected through the focal point Chief Ray or Radial Ray is a ray incident through the center of curvature (C). Since it is incident normal to the mirror’s surface, this ray is reflected back along its incident path, through C. C is the center of curvature Focal Ray is a ray that passes through the focal point and is reflected parallel to the optic axis F is the focal point C = 2f f is the focal length

Focal Point A Focal Point is a point location where parallel rays that are reflected from a mirror meet.

Images Formed with Concave Mirrors Parallel Ray and Focal Ray are needed to determine the location and size of object.

Images Formed with Concave Mirrors When object Beyond C: Image is Real Inverted Smaller do > di ho > hi

Images Formed with Concave Mirrors When object is at C Image is Real Inverted Same Size do = di ho = hi

Images Formed with Concave Mirrors When object is between C and F Image is Real Inverted Larger do < di ho < hi

Images Formed with Concave Mirrors When object is at F No Image

Images Formed with Concave Mirrors When object is between F and Mirror Image is Virtual Erect Larger do < di ho < hi

Object Location

Overview Object Image Object Image

Convex Mirrors and Images All Images are Virtual Erect Smaller do > di ho > hi

Mirror Equations Signs for f = Focal Distance di = Image Distance do = Object Distance The focal length f is positive for concave mirrors and negative for convex mirrors A more useful Equation Common to find image location The object distance do is always positive The image distance di is always positive for a real image (same side of mirror as object) and negative for a virtual image (forms behind the mirror) M = Magnification hi = Height of Image The magnification M is positive for an upright image and negative for an inverted image ho = Height of Object