WS8C-1 WORKSHOP 8C TENSION COUPON NAS120, Workshop 8C, November 2003.

Slides:



Advertisements
Similar presentations
Landing Gear Strut Estimated time required: 15 min
Advertisements

Drinking Straw Estimated Time for Completion: ~45min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
O-Ring Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Rubber Seal Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Introduction to ABAQUS 27 th February, Units Before starting to define any model, you need to decide which system of units you will use. ABAQUS.
Can Bottom Snap-through
Define a Composite Material
1 Simple Pendulum Estimated time required: 20 min GUI familiarity level required: Lower MSC.ADAMS 2005 r2.
Spring Design using Parametric Modeling
WORKSHOP 8 NONLINEAR CONTACT
9.0 New Features Large Deformation Analysis of thin plate assembly spotwelded together Workshop 2 Spotwelds.
University of Puerto Rico at Mayagüez Department of Mechanical Engineering Introduction to NX 6.0 Tutorial 3 Modified by (2011): Dr. Vijay K. Goyal and.
WORKSHOP 7 TAPERED PLATE WS7-1 NAS120, Workshop 7, November 2003.
Estimated Time for Completion: 30 minutes Experience Level: Lower Compliant Stroke Amplifier MSC.Marc 2005r2 MSC.Patran 2005r2.
ANSYS Fundamentals This document contains no technical data subject to the EAR or the ITAR.
1 Tutorial 5-1: Part Sketch / Geometric Constraints.
1 Pulley System GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
WS Mar120 - Patran Day 1 Overview - Meshing FINITE ELEMENT MODEL OF A 3-D CLEVIS AND PROPERTY ASSIGNMENT.
ADAMS Assignment 4 ME451:Kinematics and Dynamics of Machine Systems.
GTSTRUDL The GTSTRUDL Base Plate Wizard A Module for the Modeling and Analysis of Base Plates Rob Abernathy CASE Center GTSUG June, 2008 Las Vegas, NV.
Using MD Nastran/Patran and MSC.Adams together
INTERFERENCE FITS MAR Interference Fits.
CONTACT ANALYSIS USING 3D BOLTS
Gear Train MSC.ADAMS 2005 r2 GUI Familiarity Level Required: Low
WORKSHOP 11 SPACECRAFT FAIRING
1 F F Double-Cantilevered Bar Estimated time for completion: ~20 min Experience Level: Lower MSC.Patran 2005 r2.
Staple Pin Simulation Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
Crush Pipe Problem Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
1 Projectile Estimated time required: 20 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
1 MSC ADAMS 2005 r2 Crank Slider Mechanism on Incline Plane GUI Familiarity Level Required: Lower Estimated Time Required: 1 hour.
1 Short-Long Arm Suspension GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
Modal Analysis of a Simple Cantilever
1 Extrusion GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Hertz Contact Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
WORKSHOP 1 STEADY STATE HEAT TRANSFER WORKSHOP 1 STEADY STATE HEAT TRANSFER.
1 Bridge Truss Structure Estimated time required: ~30 min Experience level: Lower MSC.Patran 2005 r2.
BREAK FORMING MAR Break Forming Exercise. WS MAR 120, Break Forming, June 2004MAR Break Forming Exercise Model Description: A flat sheet.
LANDING GEAR STRUT ANALYSIS
Mar120, Workshop 7, December 2001 WORKSHOP 7 METAL FORMING A PAPER CLIP WORKSHOP 7 METAL FORMING A PAPER CLIP.
WORKSHOP 4 TRANSIENT HEAT TRANSFER ANALYSIS. WS4-2.
WS Mar120 - Patran Day 1 Overview - Results POST PROCESSING OF STRESS RESULTS.
WS-1 WORKSHOP Define Equivalent Section Plate Properties NAS121, Workshop, May 6, 2002.
BALL JOINT ANALYSIS F=600 lbf MAR 120 – Ball Joint Analysis.
1 Stadium Display Truss – Troubleshooting Estimated time required: 35 min Experience level: Higher MD Patran 2005 r2.
WS6-1 WORKSHOP 6 BRIDGE TRUSS NAS120, Workshop 6, November 2003.
GEOMETRY MODEL OF A 3-D CLEVIS
ANALYSIS OF A CANTILEVER BEAM
1 Assemble Exploded Model GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Workshop 5-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 5 Stiffened Plate Subjected to Pressure Load.
WS8B-1 WORKSHOP 8B TENSION COUPON NAS120, Workshop 8B, November 2003.
WS4-1 WORKSHOP 4 Stadium Truss NAS120, Workshop 4, November 2003.
WS9A-1 WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER NAS120, Workshop 9A, November 2003.
Workshop 2 Steel Bracket Modified by (2008): Dr. Vijay K. Goyal Associate Professor, Department of Mechanical Engineering University of Puerto Rico at.
WORKSHOP 15 PARASOLID MODELING NAS120, Workshop 15, November 2003 WS15-1.
NLISO Material Model Workshop Four REFERENCE: Training Manual Rate-Independent Plasticity (3-65)
Workshop 9-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
WS8A-1 WORKSHOP 8A TENSION COUPON NAS120, Workshop 8A, November 2003.
Mar120 - Test Specimen Necking NECKING OF A TEST SPECIMEN Symmetry Plane.
NAS133, Workshop 2, August 2011 Copyright© 2011 MSC.Software Corporation WS2 - 1 WORKSHOP 2 SOLID-TO-SOLID CONTACT.
MAR120, Workshop 1, December 2001 WORKSHOP 01 LINEAR AND NONLINEAR ANALYSIS OF A CANTILEVER BEAM.
Stress Relaxation Workshop Six REFERENCE: Training Manual Implicit Creep (4-32)
WS16-1 MAR120, Workshop 16, December 2001 WORKSHOP 16 SPECTRUM RESPONSE ANALYSIS OF A TRANSMISSION TOWER
Workshop 7B-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 7B Structure With Spring Support.
Workshop 4-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 4 Structure Subjected to Enforced Displacement at an incline.
WORKSHOP 2 SOLID-TO-SOLID CONTACT
FREQUENCY RESPONSE ANALYSIS OF TRANSMISSION TOWER
ANALYSIS OF A RUBBER SEAL
FLAT PLATE COLUMN BUCKLING
NECKING OF A TEST SPECIMEN
ENFORCED MOTION IN TRANSIENT ANALYSIS
Presentation transcript:

WS8C-1 WORKSHOP 8C TENSION COUPON NAS120, Workshop 8C, November 2003

WS8C-2 NAS120, Workshop 8C, November 2003

WS8C-3 NAS120, Workshop 8C, November 2003 n Problem Description  A tension coupon is constructed from aluminum with E = 10 x 10 6 psi and = 0.3 u The coupon thickness is in u An edge load of 50 lb is applied to the tension coupon

WS8C-4 NAS120, Workshop 8C, November lb 10 in 4 in 2.0 DIA Hole

WS8C-5 NAS120, Workshop 8C, November 2003 n Workshop Objectives u Build the tension coupon geometry u Control the mesh by using techniques discussed in class u Compare FEA stress results to theoretical results From “Stress Concentration Factors” by R. E. Peterson, Figure 86:  max = 432 psi

WS8C-6 NAS120, Workshop 8C, November 2003 n Suggested Exercise Steps 1. Create a new database. 2. Create a geometry model of the tension coupon. 3. Use Mesh Seeds to define the mesh density. 4. Create a finite element mesh. 5. Verify the finite element mesh. 6. Define material properties. 7. Define element properties and apply them to the model. 8. Apply boundary conditions to the model. 9. Apply loads to the model. 10. Submit the model to MSC.Nastran for analysis. 11. Post Process results using MSC.Patran.

WS8C-7 NAS120, Workshop 8C, November 2003 a b c d e f g Step 1. Create New Database Create a new database called tension_coupon.db a.File / New. b.Enter tension_coupon_c as the file name. c.Click OK. d.Choose Default Tolerance. e.Select MSC.Nastran as the Analysis Code. f.Select Structural as the Analysis Type. g.Click OK. a

WS8C-8 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Create two arcs a.Geometry: Create / Curve / 2D ArcAngles. b.Enter 0 for the Start Angle. c.Enter 45 for the End Angle. d.Enter [5 2 0] for the Center Point List. e.Click Apply. f.Repeat the procedure with 45 as the Start Angle and 90 as the End Angle. a b c d e

WS8C-9 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Create two more curves. a.Geometry: Create / Curve / XYZ. b.Enter for the Vector Coordinates List. c.Enter [7 2 0] for the Origin Coordinates List. d.Click Apply. e.Repeat the procedure using as the vector and [5 4 0] as the origin. a b c d

WS8C-10 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Create two surfaces a.Geometry: Create / Surface / Curve. b.Screen pick the top curve as shown. c.Screen pick the upper arc. d.Screen pick the right curve as shown. e.Screen pick the lower arc. f.Turn on display lines. a b c e d f

WS8C-11 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Create an extruded surface a.Geometry: Create / Surface / Extrude. b.Enter as the Translation Vector. c.Click in the Curve List box, then screen pick the right curve as shown. a c b

WS8C-12 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Mirror the surfaces a.Geometry: Transform / Surface / Mirror. b.Set the Mirror Plane Normal to Coord 0.2. c.For the Offset enter 2. d.Click in the Surface List box. e.Rectangular select all the surfaces as shown. a c b e d

WS8C-13 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry Mirror the surfaces again a.Geometry: Transform / Surface / Mirror. b.Set the Mirror Plane Normal to Coord 0.1. c.For the Offset enter 5. d.Click in the Surface List box. e.Rectangular select all the surfaces as shown. a b c e d

WS8C-14 NAS120, Workshop 8C, November 2003 Step 2. Create Geometry The mirrored surfaces should look like the picture on the right. a.Turn off display lines a

WS8C-15 NAS120, Workshop 8C, November 2003 Step 3. Create Mesh Seeds Create a uniform mesh seed a.Elements: Create / Mesh Seed / Uniform. b.Enter 3 for the Number of Elements. c.Click in the Curve List box. d.Screen pick each of the four edges on the left and right sides of the circle as shown. a b c d

WS8C-16 NAS120, Workshop 8C, November 2003 Step 3. Create Mesh Seeds a b c d Create a biased mesh seed a.Elements: Create / Mesh Seed / One Way Bias. b.Enter 6 for the Number of Elements. c.Enter 4 for L2/L1. d.Click on the Curve List box. e.Screen pick three of the remaining edges on the circle as shown. e

WS8C-17 NAS120, Workshop 8C, November 2003 Step 3. Create Mesh Seeds Create a biased mesh seed a.Elements: Create / Mesh Seed / One Way Bias. b.Enter 6 for the Number of Elements. c.Enter 0.25 (or -4) for L2/L1. d.Click on the Curve List box. e.Screen pick the 1 remaining edge on the circle. f.Screen pick the horizontal edge to the right of the circle. a b c d e f

WS8C-18 NAS120, Workshop 8C, November 2003 The mesh seeds should agree with the picture on the right. Step 3. Create Mesh Seeds

WS8C-19 NAS120, Workshop 8C, November 2003 Step 4. Create Mesh Create a finite element mesh a.Elements: Create / Mesh / Surface. b.Set the Element Shape to Quad, Mesher to IsoMesh, and Topology to Quad4. c.Click in the Surface List box. d.Rectangular pick the surfaces as shown. e.Enter 0.5 as the value for Global Edge Length. f.Click Apply. a b c f e d

WS8C-20 NAS120, Workshop 8C, November 2003 Step 4. Create Mesh Equivalence the model a.Elements: Equivalence / All / Tolerance Cube. b.Click Apply. a b

WS8C-21 NAS120, Workshop 8C, November 2003 Step 5. Verify Mesh Verify the quality of the finite elements a.Elements: Verify / Quad / All. b.Click Apply. c.Review the summary table. a b c

WS8C-22 NAS120, Workshop 8C, November 2003 Step 5. Verify Mesh Perform specific quality tests on the elements. a.Elements: Verify / Quad / Aspect. b.Click Apply. c.Review the fringe plot. d.Repeat for Warp, Skew, and Taper tests. e.Reset Graphics. a b c d e

WS8C-23 NAS120, Workshop 8C, November 2003 Step 5. Create Material Properties Create an isotropic material a.Materials: Create / Isotropic / Manual Input. b.Enter aluminum as the Material Name. c.Click Input Properties. d.Enter 10e6 for the elastic modulus and 0.3 for the Poisson Ratio. e.Click OK. f.Click Apply. a b c d f e

WS8C-24 NAS120, Workshop 8C, November 2003 Step 6. Create Element Properties Create element properties a.Properties: Create / 2D / Shell. b.Enter plate as the Property Set Name. c.Click Input Properties. d.Click on the Select Material Icon. e.Select aluminum as the material. f.Enter for the thickness. g.Click OK. a b c d f g e

WS8C-25 NAS120, Workshop 8C, November 2003 Step 6. Create Element Properties Select application region a.Click in the Select Members box. b.Rectangular pick the surfaces as shown. c.Click Add. d.Click Apply. a c d b

WS8C-26 NAS120, Workshop 8C, November 2003 Step 7. Apply Boundary Conditions Create the boundary condition a.Loads/BCs: Create / Displacement / Nodal. b.Enter fixed as the New Set Name. c.Click Input Data. d.Enter for Translations and for Rotations. e.Click OK. a b d e c

WS8C-27 NAS120, Workshop 8C, November 2003 Step 7. Apply Boundary Conditions Apply the boundary condition a.Click Select Application Region. b.Select the Curve or Edge filter. c.Select the bottom left edge of the surface. d.Click Add. e.Select the top left edge of the surface. f.Click Add. g.Click OK. h.Click Apply. a g h b c e d f

WS8C-28 NAS120, Workshop 8C, November 2003 Step 7. Apply Boundary Conditions The boundary condition should agree with what’s shown on the right

WS8C-29 NAS120, Workshop 8C, November 2003 Step 8. Apply Loads Create the load a.Loads/BCs: Create / Total Load / Element Uniform. b.Enter force as the New Set Name. c.Set the Target Element Type to 2D. d.Click Input Data. e.Enter for the Edge Load. f.Click OK. d b c a e f

WS8C-30 NAS120, Workshop 8C, November 2003 Apply the load a.Click Select Application Region. b.For the application region select the right edge of the top right surface as shown. c.Click Add. d.Select the right edge of the bottom right surface. e.Click Add. f.Click OK. g.Click Apply. Step 8. Apply Loads a b c f g e d

WS8C-31 NAS120, Workshop 8C, November 2003 Step 8. Apply Loads The loads and boundary condition should agree with what’s shown on the right.

WS8C-32 NAS120, Workshop 8C, November 2003 Step 9. Run Linear Static Analysis Analyze the model a.Analysis: Analyze / Entire Model / Full Run. b.Click Solution Type. c.Choose Linear Static. d.Click OK. e.Click Apply. a e b d c

WS8C-33 NAS120, Workshop 8C, November 2003 Step 10. Post Process with MSC.Patran Attach the results file a.Analysis: Access Results / Attach XDB / Result Entities. b.Click Select Results File. c.Choose the results file tension_coupon_c.xdb. d.Click OK. e.Click Apply. a b c e d

WS8C-34 NAS120, Workshop 8C, November 2003 Step 10. Post Process with MSC.Patran Erase geometry a.Display: Plot/Erase. b.Under Geometry click Erase. c.Click OK. a b c

WS8C-35 NAS120, Workshop 8C, November 2003 Step 10. Post Process with MSC.Patran Create a Quick Plot of X Component Stress a.Results: Create / Quick Plot. b.Select Stress Tensor as the Fringe Result. c.Select X Component as the Fringe Result Quantity. d.Click Apply. e.Record the maximum X component stress. Max X Stress = ________ a b c d

WS8C-36 NAS120, Workshop 8C, November 2003 Step 10. Post Process with MSC.Patran Turn off averaging a.Results: Create / Fringe. b.Select Stress Tensor as the Fringe Result. c.Select X Component as the result quantity. d.Click on the Plot Options Icon. e.Change the Coordinate Transformation to CID. f.Select Coordinate 0. g.Change the Averaging Definition Domain to None. h.Click Apply. a b c d g h f e