Sebastian Schopferer University of Freiburg IEEE RT 2010, Lisboa Development and Performance Verification of the GANDALF High-Resolution Transient Recorder.

Slides:



Advertisements
Similar presentations
Technische Universität München A digital calorimetric trigger for the COMPASS experiment at CERN Markus Krämer J. Friedrich, S. Huber, B. Ketzer, I. Konorov,
Advertisements

Application of the DRS Chip for Fast Waveform Digitizing Stefan Ritt Paul Scherrer Institute, Switzerland.
Digital RF Stabilization System Based on MicroTCA Technology - Libera LLRF Robert Černe May 2010, RT10, Lisboa
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Ultrafast 16-channel ADC for NICA-MPD Forward Detectors A.V. Shchipunov Join Institute for Nuclear Research Dubna, Russia
CHL -2 Level 1 Trigger System Fully Pipelined Custom ElectronicsDigitization Drift Chamber Pre-amp The GlueX experiment will utilize fully pipelined front.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
6 June 2002UK/HCAL common issues1 Paul Dauncey Imperial College Outline: UK commitments Trigger issues DAQ issues Readout electronics issues Many more.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Multichannel Analyzers A multichannel pulse-height analyzer (MCA) consists of an ADC, a histogramming memory, and a visual display of the histogram recorded.
Yu. Artyukh, V. Bespal’ko, E. Boole, V. Vedin Institute of Electronics and Computer Science Riga, LATVIA 16th International Workshop on Laser.
Integrating High-Speed ADCs in the SRS System for Scintillating Detectors in PW- laser Driven Physics Experiments Sorin Martoiu (IFIN-HH, Bucharest)
Status of LAV FEE electronics G. Corradi, C. Paglia, D. Tagnani & M. Raggi, T. Spadaro, P. Valente.
Wir schaffen Wissen – heute für morgen 24 August 2015PSI,24 August 2015PSI, Paul Scherrer Institut Status WP 8.2 RF Low Level Electronic Manuel Brönnimann.
3/7/05A. Semenov Batch-by-Batch Intensity Monitor 1 Two-Channel Batch by Batch Intensity Monitor for Main Injector BBI.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
 Brief status update of DAQ/Trigger production hardware  Firmware development for HPS application  CLAS12 CTP ‘upgrade’ notes  Summary Status of the.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
NEDA collaboration meeting at IFIC Valencia, 3rd-5th November 2010 M. Tripon EXOGAM2 project Digital instrumentation of the EXOGAM detector EXOGAM2 - Overview.
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Dariusz Makowski, Technical University of Łódź LLRF review, DESY, 3-4 December 2007 Advanced.
SBS meeting VETROC application for Cerenkov triggering Alexandre Camsonne March 18 th 2015.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
Front-end readout study for SuperKEKB IGARASHI Youichi.
W.Skulski APS April/2003 Eight-Channel Digital Pulse Processor And Universal Trigger Module. Wojtek Skulski, Frank Wolfs University of Rochester.
Alexei SemenovGeneric Digitizer Generic Digitizer 10MHZ 16 bit 6U VME Board.
12GeV Trigger Workshop Christopher Newport University 8 July 2009 R. Chris Cuevas Welcome! Workshop goals: 1.Review  Trigger requirements  Present hardware.
Update on final LAV front-end M. Raggi, T. Spadaro, P. Valente & G. Corradi, C. Paglia, D. Tagnani.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
09/10/2010 RD51 Collaboration Meeting Cisbani-Musico-Minutoli / Status JLab Electronics 1 Status of the APV25 electronics for the GEM tracker at JLab Evaristo.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
Status of the PSD upgrade - Status of the PSD cooling and temperature stabilization system - MAPD gain monitoring system - PSD readout upgrade F.Guber,
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
Mitglied der Helmholtz-Gemeinschaft Hardware characterization of ADC based DAQ-System for PANDA STT A. Erven, L. Jokhovets, P.Kulessa, H.Ohm,
1 Timing of the calorimeter monitoring signals 1.Introduction 2.LED trigger signal timing * propagation delay of the broadcast calibration command * calibration.
Readout controller Block Diagram S. Hansen - CD-1 Lehman Review1 VXO Ø Det Links to 24 SiPM Front End Boards Clock Event Data USB ARM uC A D Rd Wrt 100Mbit.
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
Trigger system for setup 2016 V. Rogov, V. Yurevich,D.Bogoslovski, S.Sergeev, O.Batenkov* LHEP JINR *V. G. Khlopin Radium Institute, St. Petersburg.
Super BigBite DAQ & Trigger Jens-Ole Hansen Hall A Collaboration Meeting 16 December 2009.
PHOTOTUBE SCANNING SETUP AT THE UNIVERSITY OF MARYLAND Doug Roberts U of Maryland, College Park.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
DAQ and Trigger for HPS run Sergey Boyarinov JLAB July 11, Requirements and available test results 2. DAQ status 3. Trigger system status and upgrades.
 13 Readout Electronics A First Look 28-Jan-2004.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
Digital Acquisition: State of the Art and future prospects
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
Update of test results for MCP time measurement with the USB WaveCatcher board D.Breton & J.Maalmi (LAL Orsay), E.Delagnes (CEA/IRFU)
Designing electronics for a TOF Forward PID for SuperB D. Breton & J
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
KRB proposal (Read Board of Kyiv group)
Update of time measurement results with the USB WaveCatcher board & Electronics for the DIRC-like TOF prototype at SLAC D.Breton , L.Burmistov,
PADME L0 Trigger Processor
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
A First Look J. Pilcher 12-Mar-2004
Possible Upgrades ToF readout Trigger Forward tracking
Front-end electronic system for large area photomultipliers readout
Christophe Beigbeder/ ETD PID meeting
Commodity Flash ADC-FPGA Based Electronics for an
PID meeting Mechanical implementation Electronics architecture
The LHCb Front-end Electronics System Status and Future Development
Presentation transcript:

Sebastian Schopferer University of Freiburg IEEE RT 2010, Lisboa Development and Performance Verification of the GANDALF High-Resolution Transient Recorder System

27 May 2010Sebastian Schopferer, RT 2010, Lisboa2/18 COMPASS – Fixed Target Experiment COMPASS – Experiment: 240 physicists from 11 countries and 28 institutions

27 May 2010Sebastian Schopferer, RT 2010, Lisboa3/18 COMPASS Facility (since 2002) 50m Hadron Spectroscopy, Deep Inelastic Scattering μ 190 GeV/c high intensity (2∙10 7 s -1 ) large halo  polarized target (NH 3 or LiD)  2-stage spectrometer  several types of trackers  calorimeters (ECAL, HCAL)  PID (Muon-Filters, RICH) ,K

27 May 2010Sebastian Schopferer, RT 2010, Lisboa4/18 COMPASS-II Upgrade 2,5m liquid hydrogen target COMPASS spectrometer: trackers, calorimeters, PID p  μ μ Recoil Proton Detector: to ensure exclusivity of the observed process DVCS:  p   p  COMPASS-II proposal: determination of Generalized Parton Distributions

27 May 2010Sebastian Schopferer, RT 2010, Lisboa5/18 Recoil Proton Detector (RPD) 4m -4V measurement of: -time-of-flight (σ < 200ps) -energy deposit high luminosity: separation of pile-up pulses is required p inner barrel (A): Ø 0.50 m outer barrel (B): Ø 2.20 m μ  0V 0ns40ns

27 May 2010Sebastian Schopferer, RT 2010, Lisboa6/18 VME64x Interface USB 2.0 S-Link Interface to DAQ S-Link Interface to DAQ VITA 41.0 VXS Interface VITA 41.0 VXS Interface TCS 8 Analog Inputs 8 Analog Inputs 8 Analog Inputs 8 Analog Inputs 144Mbit QDRII+ 4Gbit DDR2 Memories 144Mbit QDRII+ 4Gbit DDR2 Memories V5 LXT FPGA for Memory Control & Data Output V5 LXT FPGA for Memory Control & Data Output 500Mhz Bandwidth Analog Inputs 500Mhz Bandwidth Analog Inputs V5 SXT FPGA for Data Processing V5 SXT FPGA for Data Processing 12 bit 500MS/s ADCs 12 bit 500MS/s ADCs 16bit DACs for Offset Correction 16bit DACs for Offset Correction Digital Pulse Processing for real-time extraction of time, amplitude and integral information

27 May 2010Sebastian Schopferer, RT 2010, Lisboa7/18 ADC Mezzanine Card 8 ADC channels or optional time-interleaved mode offsets are adjustable by DACs gain is adjustable by changing some passive components flexible input range (e.g. -4V..0V, -1V..0V, -2V..+2V, …)

27 May 2010Sebastian Schopferer, RT 2010, Lisboa8/18 Time Interleaved Mode Advantage: High High Sampling Rate 1Gsps Challenges –Symmetric clock distribution –Clock Jitter < 1ps –Symmetric placement of devices FPGA Analog IN DSPLL Clock System 38.88MHz Exp. Clock 500MHz 0° 500MHz 180° AI ADC Time Analog Digital Time Possible errors are corrected –Gain error –Offset error

27 May 2010Sebastian Schopferer, RT 2010, Lisboa9/18 Sampling Clock Requirements Jitter of sampling clock increases noise on signal and reduces Effective Number of Bits High Precision Clock Source needed! ENOB = (SNR – 1.76) / 6.02

27 May 2010Sebastian Schopferer, RT 2010, Lisboa10/18 Sampling Clock Quality AnalogIN LMH6552 ADC Clock Synth TCS Receiver 155,52MHz MHz Si5326 ADS5463 AnalogIN LMH6552 ADC Clock Synth OCXO 500MHz 20MHz Si5326 ADS5463 Sampling JitterTCS Jitter nsps 900 fs Sampling JitterOCXO Jitter nsps 730 fs

27 May 2010Sebastian Schopferer, RT 2010, Lisboa11/18 GANDALF Performance Signal-to-Noise Ratio (Effective Number of Bits) f in LMH6552 ADC Measurement Setup: AFG3252 and high performance band-pass filters

27 May 2010Sebastian Schopferer, RT 2010, Lisboa12/18 Fit Algorithms for Time Extraction Digital Constant Fraction Discrimination Delay Fraction factor t meas.

27 May 2010Sebastian Schopferer, RT 2010, Lisboa13/18 GANDALF dCFD Performance create PMT-like pulses with function generator pile-up pulses with amplitude and phase modulation timing resolution vs. pulse amplitude sampled in 1GS/s mode 4V40mV

27 May 2010Sebastian Schopferer, RT 2010, Lisboa14/18 GANDALF Laser Test PMT: RT – 1.3kV Laser Pulser GAN DALF sampled in 1GS/s mode

27 May 2010Sebastian Schopferer, RT 2010, Lisboa15/18 Fast Recoil Detector Trigger Trigger Processor GANDALF Proton Trigger VXS Backplane Analog Inputs Exp. Trigger i target inner Layer outer Layer A i+1 AiAi A i-1 B i+1 B i-1 t proton - t muon energy deposit vs.  geometric structure μ p B A  VITA 41.0 Specification

27 May 2010Sebastian Schopferer, RT 2010, Lisboa16/18 GANDALF as TDC & Logic Module Trigger & Clock Data Processing, Analog Trigger Generation Memory Controller VME Interface, Board Config. Compact Flash Memory 16 HS Channels via VXS to Switch To Backplane To Transition VME64x Interface to VME CPU QDRII 144Mb DDR2 4Gb HF CLK S-Link Interface via P2 USB TCS 64 channel LVDS/LVPECL inputs 1 NIM Input 2 NIM Outputs 64 channel LVDS/LVPECL inputs 1 NIM Input 2 NIM Outputs 32 ch. LVDS input NIM I/O (LEMO) 32 ch. LVDS input NIM I/O (LEMO) Implementation of TDCs, scalers, mean-timers, … inside the FPGA

27 May 2010Sebastian Schopferer, RT 2010, Lisboa17/18 GANDALF Mean-Timer 64 mean timer channels max. time difference: 29 ns resolution: 230 ps variable input delay (max 8ns) to compensate cable lengths mean-timer signals are fed into coincidence matrix matrix pixels can be switched on/off on-the-fly (John Bieling, University of Bonn)

27 May 2010Sebastian Schopferer, RT 2010, Lisboa18/18 Generic Advanced Numerical Device for Analog and Logic Functions … is a VME64x readout system for high energy physics … is a transient recorder which meets all design goals: –Effective Number of Bits > 10 bit –Time resolution < 50 ps … is a logic module with possibilities to implement TDC, Scaler, mean-timer and trigger matrix functionalities … is a VXS payload board to allow multi- module trigger decisions

27 May 2010Sebastian Schopferer, RT 2010, Lisboa19/18 Thanks for your attention!

27 May 2010Sebastian Schopferer, RT 2010, Lisboa20/18 Backup

27 May 2010Sebastian Schopferer, RT 2010, Lisboa21/18 Timing Resolution Methods converge at low amplitudes Spline algorithm reaches better timing resolution Constant Fraction reaches good timing resolution with very low calculation efforts! Timing Resolution

27 May 2010Sebastian Schopferer, RT 2010, Lisboa22/18 Near following Pulses Best achievable resolution for near following pulses Digital signal process developed for double risetime range

27 May 2010Sebastian Schopferer, RT 2010, Lisboa23/18 GANDALF Performance II 1GHz sampling rate Offset correction by DAC Gain correction by FPGA 1GHz sampling rate Offset correction by DAC Gain correction by FPGA Gain Adjustment 10bit ENOB Interleaved:

27 May 2010Sebastian Schopferer, RT 2010, Lisboa24/18 FPGA TDC Implementation Shifted Clock Sampling

27 May 2010Sebastian Schopferer, RT 2010, Lisboa25/18 Share FPGA Resources Constant Fraction

27 May 2010Sebastian Schopferer, RT 2010, Lisboa26/18 8 Channel AD 500Msps 12bit 16bit offset DAC Trigger & Clock 8 Channel AD 500Msps 12bit 16bit offset DAC 8 Analog Inputs USB TCS Data Processing Online Feature Extraction Memory Controller VME Interface, Board Config. Compact Flash Memory low latency connection via VXS to Trigger Processor To Backplane To Transition VME64x Interface QDRII 144Mb DDR2 4Gb HF CLK Readout via CERN S-Link Interface 8 Analog Inputs To Backplane

27 May 2010Sebastian Schopferer, RT 2010, Lisboa27/18 Data Bus to GANDALF Board Digital Mezzanine Card NIM I/O (LEMO) TTL to NIM Buffer High Density Connector 32 ch. LVDS input LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer LVDS Buffer NIM to TTL Buffer

27 May 2010Sebastian Schopferer, RT 2010, Lisboa28/18 Messungen zur Zeitauflösung JitterTCSSi5326 TIE130ps16ps Board vs Board 90ps5ps Differenz der TIEs zwischen 2 GANDALF Boards: 5ps Zeit 2,5μs / div TIE 10ps / div Exp. Clock FAN OUT GANDALF

27 May 2010Sebastian Schopferer, RT 2010, Lisboa29/18 Transient Recorder Challenges –Define and calculate the time of the signal shape –Time of Flight calculation with a resolution of < 200ps –Determine the amplitude of the signals with high dynamic range –Seperate signals from pile-up pulses –Create a trigger for recoil protons from multiple signal channels